{"title":"Identification of Prognostic and Immune Characteristics of Two Lung Adenocarcinoma Subtypes Based on TRPV Channel Family Genes.","authors":"Jianhua Jiang, Pengchao Zheng, Lei Li","doi":"10.1007/s00232-023-00300-1","DOIUrl":null,"url":null,"abstract":"<p><p>Lung adenocarcinoma (LUAD) is one of the deadliest malignant tumors worldwide. Transient receptor potential vanilloid (TRPV) channels take pivotal parts in many cancers, but their impact on LUAD remains unexplored. In this study, LUAD samples were classified into two subtypes according to the expression characteristics of TRPV1-6 genes, with LUAD subtype cluster2 exhibiting significantly higher survival rates than cluster1. Subsequently, analysis of differentially expressed genes (DEGs) was performed between cluster1 and cluster2, revealing enrichment of DEGs in channel activity and Ca<sup>2+</sup> signaling pathways. We established a protein-protein interaction network based on DEGs and constructed a LUAD prognostic model by using Cox regression analysis based on genes corresponding to 170 protein nodes. The prognostic model demonstrated good predictive ability for patient prognosis, with higher survival rates observed in the low-risk (LR) group. The risk score was validated as an independent prognostic indicator, according to Cox regression analysis. A clinically applicable nomogram was plotted. Immunological analysis indicated that the LR and high-risk (HR) groups had varied proportions of immune cell infiltration. The immunotherapy prediction indicated that LUAD patients in LR group had a greater likelihood to benefit from immune checkpoint blockade therapy. Furthermore, we hypothesized that the expression patterns of feature genes in the LUAD model were related to the sensitivity to lung cancer therapeutic drugs TAS-6417 and Erlotinib. To sum up, our LUAD prognostic model possessed clinical applicability for prognosis and immunotherapy response prediction.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-023-00300-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lung adenocarcinoma (LUAD) is one of the deadliest malignant tumors worldwide. Transient receptor potential vanilloid (TRPV) channels take pivotal parts in many cancers, but their impact on LUAD remains unexplored. In this study, LUAD samples were classified into two subtypes according to the expression characteristics of TRPV1-6 genes, with LUAD subtype cluster2 exhibiting significantly higher survival rates than cluster1. Subsequently, analysis of differentially expressed genes (DEGs) was performed between cluster1 and cluster2, revealing enrichment of DEGs in channel activity and Ca2+ signaling pathways. We established a protein-protein interaction network based on DEGs and constructed a LUAD prognostic model by using Cox regression analysis based on genes corresponding to 170 protein nodes. The prognostic model demonstrated good predictive ability for patient prognosis, with higher survival rates observed in the low-risk (LR) group. The risk score was validated as an independent prognostic indicator, according to Cox regression analysis. A clinically applicable nomogram was plotted. Immunological analysis indicated that the LR and high-risk (HR) groups had varied proportions of immune cell infiltration. The immunotherapy prediction indicated that LUAD patients in LR group had a greater likelihood to benefit from immune checkpoint blockade therapy. Furthermore, we hypothesized that the expression patterns of feature genes in the LUAD model were related to the sensitivity to lung cancer therapeutic drugs TAS-6417 and Erlotinib. To sum up, our LUAD prognostic model possessed clinical applicability for prognosis and immunotherapy response prediction.
期刊介绍:
The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function.
Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations.
While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.