Effective removal of malachite green oxalate from aqueous solution using Newbouldia laevis husk/MWCNTs nanocomposite: equilibrium, kinetics, and thermodynamics.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-05-01 Epub Date: 2023-12-27 DOI:10.1080/15226514.2023.2297749
Friday James Amaku, Raymond Taziwa
{"title":"Effective removal of malachite green oxalate from aqueous solution using <i>Newbouldia laevis</i> husk/MWCNTs nanocomposite: equilibrium, kinetics, and thermodynamics.","authors":"Friday James Amaku, Raymond Taziwa","doi":"10.1080/15226514.2023.2297749","DOIUrl":null,"url":null,"abstract":"<p><p>The discharge of colored effluent into water bodies is a big concern; hence, the current work was designed to fabricate a superior nanocomposite (NBM) using the <i>Newbouldia laevis</i> husk (NB) and functionalized multiwalled carbon nanotubes (<i>f-</i>MWCNTs) for the adsorption of malachite green oxalate (MGO). Brunauer-Emmett-Teller (BET) surface analysis was used to assess the specific surface area of NB (0.7699 m<sup>2</sup> g<sup>-1</sup>) and NBM (94.006 m<sup>2</sup> g<sup>-1</sup>). Fourier transform infrared spectroscopy (FTIR) was employed to determine the chemical moieties on the surface of the adsorbent. Field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA) were used to analyze the surface morphology and the thermal behavior of the adsorbents. Essential factors of the adsorption process were investigated, and it was revealed that pH 6.0, adsorbent dose of 0.05 g, contact time 80 min, concentration of 100 mg dm<sup>-3</sup> and maximum adsorption capacity of 35.78 mg g<sup>-1</sup> (NB) and 69.97 mg g<sup>-1</sup> (NBM) were the optimal parameters. The NB and NBM adsorption processes followed a pseudo-first-order kinetic model. The exothermic and endothermic adsorptive processes were noticed to be the best descriptions of MGO elimination by NB and NBM, respectively. The uptake of MGO by NB and NBM was best described by models of Freundlich and Langmuir isotherms. Besides, NBM demonstrated uptake efficiency that is >80% after the fourth adsorption/desorption cycle. As a result, NBM has a wide range of possible uses in environmental remediation.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2023.2297749","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The discharge of colored effluent into water bodies is a big concern; hence, the current work was designed to fabricate a superior nanocomposite (NBM) using the Newbouldia laevis husk (NB) and functionalized multiwalled carbon nanotubes (f-MWCNTs) for the adsorption of malachite green oxalate (MGO). Brunauer-Emmett-Teller (BET) surface analysis was used to assess the specific surface area of NB (0.7699 m2 g-1) and NBM (94.006 m2 g-1). Fourier transform infrared spectroscopy (FTIR) was employed to determine the chemical moieties on the surface of the adsorbent. Field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA) were used to analyze the surface morphology and the thermal behavior of the adsorbents. Essential factors of the adsorption process were investigated, and it was revealed that pH 6.0, adsorbent dose of 0.05 g, contact time 80 min, concentration of 100 mg dm-3 and maximum adsorption capacity of 35.78 mg g-1 (NB) and 69.97 mg g-1 (NBM) were the optimal parameters. The NB and NBM adsorption processes followed a pseudo-first-order kinetic model. The exothermic and endothermic adsorptive processes were noticed to be the best descriptions of MGO elimination by NB and NBM, respectively. The uptake of MGO by NB and NBM was best described by models of Freundlich and Langmuir isotherms. Besides, NBM demonstrated uptake efficiency that is >80% after the fourth adsorption/desorption cycle. As a result, NBM has a wide range of possible uses in environmental remediation.

利用月橘壳/MWCNTs 纳米复合材料有效去除水溶液中的孔雀石绿草酸盐:平衡、动力学和热力学。
将有色污水排放到水体中是一个非常令人担忧的问题;因此,目前的研究工作旨在利用月橘壳(NB)和功能化多壁碳纳米管(f-MWCNTs)制造一种优异的纳米复合材料(NBM),用于吸附孔雀石绿草酸盐(MGO)。采用布鲁纳-艾美特-泰勒(BET)表面分析法评估了 NB(0.7699 m2 g-1)和 NBM(94.006 m2 g-1)的比表面积。傅立叶变换红外光谱(FTIR)用于确定吸附剂表面的化学分子。场发射扫描电子显微镜(FESEM)和热重分析(TGA)用于分析吸附剂的表面形态和热行为。研究表明,pH 值为 6.0、吸附剂剂量为 0.05 克、接触时间为 80 分钟、浓度为 100 毫克 dm-3、最大吸附容量为 35.78 毫克 g-1(NB)和 69.97 毫克 g-1(NBM)是吸附过程的最佳参数。NB 和 NBM 的吸附过程遵循伪一阶动力学模型。注意到放热和内热吸附过程分别是 NB 和 NBM 消除 MGO 的最佳描述。Freundlich 和 Langmuir 等温线模型对 NB 和 NBM 吸收 MGO 的过程进行了最好的描述。此外,NBM 在第四次吸附/解吸循环后的吸收效率大于 80%。因此,NBM 在环境修复方面具有广泛的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信