Biodegradable polymeric insulin microneedles - a design and materials perspective review.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2024-12-01 Epub Date: 2023-12-26 DOI:10.1080/10717544.2023.2296350
Melbha Starlin Chellathurai, Syed Mahmood, Zarif Mohamed Sofian, Cheng Wan Hee, Ramkanth Sundarapandian, Haja Nazeer Ahamed, C S Kandasamy, Ayah R Hilles, Najihah Mohd Hashim, Ashok Kumar Janakiraman
{"title":"Biodegradable polymeric insulin microneedles - a design and materials perspective review.","authors":"Melbha Starlin Chellathurai, Syed Mahmood, Zarif Mohamed Sofian, Cheng Wan Hee, Ramkanth Sundarapandian, Haja Nazeer Ahamed, C S Kandasamy, Ayah R Hilles, Najihah Mohd Hashim, Ashok Kumar Janakiraman","doi":"10.1080/10717544.2023.2296350","DOIUrl":null,"url":null,"abstract":"<p><p>Microneedle (MN) delivery devices are more accepted by people than regular traditional needle injections (e.g. vaccination) due to their simplicity and adaptability. Thus, patients of chronic diseases like diabetes look for alternative pain-free treatment regimens circumventing regular subcutaneous injections. Insulin microneedles (INS-MNs) are a thoughtfully researched topic (1) to overcome needle phobia in patients, (2) for controlled delivery of the peptide, (3) decreasing the frequency of drug administration, (4) to ease the drug administration procedure, and (5) thus increasing patient adherence to the treatment dosage regimes. MNs physically disrupt the hard outer skin layer to create minuscule pores for insulin (INS) to pass through the dermal capillaries into the systemic circulation. Biodegradable polymeric MNs are of greater significance for INS and vaccine delivery than silicon, metal, glass, or non-biodegradable polymeric MNs due to their ease of fabrication, mass production, cost-effectiveness, and bioerodability. In recent years, INS-MNs have been researched to deliver INS through the transdermal implants, buccal mucosa, stomach wall, intestinal mucosal layers, and colonic mucosa apart from the usual transdermal delivery. This review focuses on the design characteristics and the applications of biodegradable/dissolvable polymeric INS-MNs in transdermal, intra-oral, gastrointestinal (GI), and implantable delivery. The prospective approaches to formulate safe, controlled-release INS-MNs were highlighted. Biodegradable/dissolvable polymers, their significance, their impact on MN morphology, and INS release characteristics were outlined. The developments in biodegradable polymeric INS-MN technology were briefly discussed. Bio-erodible polymer selection, MN fabrication and evaluation factors, and other design aspects were elaborated.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2296350"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2023.2296350","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Microneedle (MN) delivery devices are more accepted by people than regular traditional needle injections (e.g. vaccination) due to their simplicity and adaptability. Thus, patients of chronic diseases like diabetes look for alternative pain-free treatment regimens circumventing regular subcutaneous injections. Insulin microneedles (INS-MNs) are a thoughtfully researched topic (1) to overcome needle phobia in patients, (2) for controlled delivery of the peptide, (3) decreasing the frequency of drug administration, (4) to ease the drug administration procedure, and (5) thus increasing patient adherence to the treatment dosage regimes. MNs physically disrupt the hard outer skin layer to create minuscule pores for insulin (INS) to pass through the dermal capillaries into the systemic circulation. Biodegradable polymeric MNs are of greater significance for INS and vaccine delivery than silicon, metal, glass, or non-biodegradable polymeric MNs due to their ease of fabrication, mass production, cost-effectiveness, and bioerodability. In recent years, INS-MNs have been researched to deliver INS through the transdermal implants, buccal mucosa, stomach wall, intestinal mucosal layers, and colonic mucosa apart from the usual transdermal delivery. This review focuses on the design characteristics and the applications of biodegradable/dissolvable polymeric INS-MNs in transdermal, intra-oral, gastrointestinal (GI), and implantable delivery. The prospective approaches to formulate safe, controlled-release INS-MNs were highlighted. Biodegradable/dissolvable polymers, their significance, their impact on MN morphology, and INS release characteristics were outlined. The developments in biodegradable polymeric INS-MN technology were briefly discussed. Bio-erodible polymer selection, MN fabrication and evaluation factors, and other design aspects were elaborated.

生物可降解聚合物胰岛素微针--设计与材料视角综述。
微针(MN)给药装置由于其简便性和适应性,比常规的传统针头注射(如疫苗接种)更容易被人们接受。因此,糖尿病等慢性病患者正在寻找可避免常规皮下注射的无痛治疗方案。胰岛素微针(INS-MNs)是一个经过深思熟虑的研究课题:(1) 克服患者的针头恐惧症;(2) 控制肽的输送;(3) 减少给药频率;(4) 简化给药程序;(5) 从而提高患者对治疗剂量方案的依从性。MN 物理性地破坏了坚硬的皮肤外层,为胰岛素(INS)通过真皮毛细血管进入全身循环创造了微小的孔隙。与硅、金属、玻璃或非生物可降解聚合物 MN 相比,生物可降解聚合物 MN 因其易于制造、大规模生产、成本效益高和生物可重复性等优点,在 INS 和疫苗递送方面具有更重要的意义。近年来,INS-MNs 已被研究用于通过透皮植入物、口腔粘膜、胃壁、肠粘膜层和结肠粘膜递送 INS,而不是通常的透皮递送。本综述重点介绍生物可降解/可溶解聚合物 INS-MN 在透皮、口腔内、胃肠道(GI)和植入给药方面的设计特点和应用。重点介绍了配制安全控释 INS-MNs 的前瞻性方法。概述了生物可降解/可溶解聚合物、其重要性、对 MN 形态的影响以及 INS 释放特性。简要讨论了生物可降解聚合物 INS-MN 技术的发展。详细阐述了生物可降解聚合物的选择、MN 的制造和评估因素以及其他设计方面的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信