Transferosomes stabilized hydrogel incorporated rhodomyrtone-rich extract from Rhodomyrtus tomentosa leaf fortified with phosphatidylcholine for the management of skin and soft-tissue infections.
Julalak Chorachoo Ontong, Sudarshan Singh, Thanyaluck Siriyong, Supayang P Voravuthikunchai
{"title":"Transferosomes stabilized hydrogel incorporated rhodomyrtone-rich extract from Rhodomyrtus tomentosa leaf fortified with phosphatidylcholine for the management of skin and soft-tissue infections.","authors":"Julalak Chorachoo Ontong, Sudarshan Singh, Thanyaluck Siriyong, Supayang P Voravuthikunchai","doi":"10.1007/s10529-023-03452-1","DOIUrl":null,"url":null,"abstract":"<p><p>Rhodomyrtus tomentosa leaf (RT)-incorporated transferosomes were developed with lecithin and cholesterol blends with edge activators at different ratios. RT-transferosomes were characterized and employed in transferosomal gel formulations for the management of skin and soft-tissue infections. The optimized formulation entrapped up to 81.90 ± 0.31% of RT with spherical vesicles (405.3 ± 2.0 nm), polydispersity index value of 0.16 ± 0.08, and zeta potential of - 61.62 ± 0.86 mV. Total phenolic and flavonoid contents of RT-transferosomes were 15.65 ± 0.04 μg GAE/g extract and 43.13 ± 0.91 μg QE/g extract, respectively. RT-transferosomes demonstrated minimum inhibitory and minimum bactericidal concentrations at 8-256 and 64-1024 μg/mL, respectively. Free radical scavenging assay showed RT-transferosomes with high scavenging activity against DPPH and ABTS radicals. Moreover, RT-transferosomes demonstrated moderate activity against mushroom tyrosinase, with IC50 values of 245.32 ± 1.32 μg/mL. The biocompatibility results against L929 fibroblast and Vero cells demonstrated IC<sub>50</sub> at 7.05 ± 0.17 and 4.73 ± 0.13 μg/mL, respectively. In addition, nitric oxide production significantly decreased by 6.78-88.25% following the treatment with 31.2-500 ng/mL RT-transferosomes (p < 0.001). Furthermore, the freeze-thaw stability study displayed no significant change in stability in the sedimentation and pH of gel fortified with RT-transferosomes. The results suggested that RT-transferosome formulation can be effectively employed as natural biomedicines for scar prevention and the management of skin soft-tissue infections.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-023-03452-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Rhodomyrtus tomentosa leaf (RT)-incorporated transferosomes were developed with lecithin and cholesterol blends with edge activators at different ratios. RT-transferosomes were characterized and employed in transferosomal gel formulations for the management of skin and soft-tissue infections. The optimized formulation entrapped up to 81.90 ± 0.31% of RT with spherical vesicles (405.3 ± 2.0 nm), polydispersity index value of 0.16 ± 0.08, and zeta potential of - 61.62 ± 0.86 mV. Total phenolic and flavonoid contents of RT-transferosomes were 15.65 ± 0.04 μg GAE/g extract and 43.13 ± 0.91 μg QE/g extract, respectively. RT-transferosomes demonstrated minimum inhibitory and minimum bactericidal concentrations at 8-256 and 64-1024 μg/mL, respectively. Free radical scavenging assay showed RT-transferosomes with high scavenging activity against DPPH and ABTS radicals. Moreover, RT-transferosomes demonstrated moderate activity against mushroom tyrosinase, with IC50 values of 245.32 ± 1.32 μg/mL. The biocompatibility results against L929 fibroblast and Vero cells demonstrated IC50 at 7.05 ± 0.17 and 4.73 ± 0.13 μg/mL, respectively. In addition, nitric oxide production significantly decreased by 6.78-88.25% following the treatment with 31.2-500 ng/mL RT-transferosomes (p < 0.001). Furthermore, the freeze-thaw stability study displayed no significant change in stability in the sedimentation and pH of gel fortified with RT-transferosomes. The results suggested that RT-transferosome formulation can be effectively employed as natural biomedicines for scar prevention and the management of skin soft-tissue infections.