Noor Azfarena Ahmad, Mohammad Taghi Hajibeigy, Mohsen Nabi Poor, Aras Kartouzian, Hassan Moeini, Kamyar Shameli
{"title":"Arc Discharge Synthesis of Chitosan-Mediated Copper Nanoparticles for Heterogeneous Catalysis in 4-Nitrophenol Degradation","authors":"Noor Azfarena Ahmad, Mohammad Taghi Hajibeigy, Mohsen Nabi Poor, Aras Kartouzian, Hassan Moeini, Kamyar Shameli","doi":"10.1002/ppsc.202300152","DOIUrl":null,"url":null,"abstract":"Copper nanoparticles (Cu-NPs) have garnered substantial interest in the field of nanotechnology due to their exceptional physical and chemical properties and cost-effectiveness. However, challenges such as particle aggregation and rapid copper oxidation affect nanoscale production. This study systematically investigates the synthesis of colloidal Cu-NPs using chitosan (Cts) as a stabilizer and reducing agent in the arc discharge system, comparing it to distilled water as a medium. Confirmation of the purity, size, and morphology of the Cu-NPs is achieved through various physicochemical characterization methods. X-ray diffraction patterns confirm the synthesis of highly pure face-centered cubic (fcc) crystal Cu-NPs. UV–vis analysis reveals absorption peaks at 572–585 nm, indicating pure copper. Fourier-transform infrared spectroscopy shows peaks at 638 and 597 cm<sup>−1</sup>, corresponding to Cu─Cts bonds. Transmission electron microscopy images depict spherical nanoparticles ranging from 15 to 45 nm, with smaller sizes at higher Cts concentrations. The catalytic activity of Cu-NPs in the degradation of 4-nitrophenol to 4-aminophenol is assessed, with Cu-NPs synthesized in distilled water demonstrating superior catalytic properties compared to 0.10 wt.% Cts. This study highlights the efficacy of the arc discharge method in producing pure, uniformly sized Cu-NPs with potential applications in catalysis.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202300152","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Copper nanoparticles (Cu-NPs) have garnered substantial interest in the field of nanotechnology due to their exceptional physical and chemical properties and cost-effectiveness. However, challenges such as particle aggregation and rapid copper oxidation affect nanoscale production. This study systematically investigates the synthesis of colloidal Cu-NPs using chitosan (Cts) as a stabilizer and reducing agent in the arc discharge system, comparing it to distilled water as a medium. Confirmation of the purity, size, and morphology of the Cu-NPs is achieved through various physicochemical characterization methods. X-ray diffraction patterns confirm the synthesis of highly pure face-centered cubic (fcc) crystal Cu-NPs. UV–vis analysis reveals absorption peaks at 572–585 nm, indicating pure copper. Fourier-transform infrared spectroscopy shows peaks at 638 and 597 cm−1, corresponding to Cu─Cts bonds. Transmission electron microscopy images depict spherical nanoparticles ranging from 15 to 45 nm, with smaller sizes at higher Cts concentrations. The catalytic activity of Cu-NPs in the degradation of 4-nitrophenol to 4-aminophenol is assessed, with Cu-NPs synthesized in distilled water demonstrating superior catalytic properties compared to 0.10 wt.% Cts. This study highlights the efficacy of the arc discharge method in producing pure, uniformly sized Cu-NPs with potential applications in catalysis.
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.