Jonathan Y.B. Jedal, Anders Malmendal, Hans Ramløv
{"title":"Metabolites, ions, and the mechanisms behind seasonal cold hardening of Pyrochroa coccinea (Pyrochroidae) larvae","authors":"Jonathan Y.B. Jedal, Anders Malmendal, Hans Ramløv","doi":"10.1016/j.jinsphys.2023.104610","DOIUrl":null,"url":null,"abstract":"<div><p>The larvae of the black headed cardinal beetle <em>Pyrochroa coccinea,</em> overwinters under the bark of dead logs in northern European dioecious forests, and are thus exposed to temperatures below the melting point of their bodily fluids. Here we explore the mechanisms behind their seasonal cold hardening by characterising field samples collected monthly throughout the year. Both the lower lethal temperature and supercooling point dropped as much as 10℃ in the second half of November, reaching values around –15℃ by the beginning of December. This change was accompanied by a 320 mosmol/kg increase in hemolymph osmolality, which is a doubling compared to the summer levels. We used NMR metabolomics to identify and measure the absolute concentrations of the responsible cryoprotective C-H containing metabolites in the hemolymph. The largest increase was found to be in either glucose or trehalose, with an average total increase of 120 mM. Proline, alanine, and choline concentrations were found to increase by around 10 mM each. Contrarily, phosphocholine and phosphoethanolamine were halved, resulting in a total decrease of around 50 mM. These measurements were complemented with ion exchange chromatography measurements. This allowed us to account for all the osmotic pressure in the summer hemolymph, and the measured concentration changes explained as much as 40 % of the observed osmolality increase upon cold hardening. Preliminary results indicate that the remainder may be explained by non-colligative protein contributions.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"153 ","pages":"Article 104610"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191023001361","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The larvae of the black headed cardinal beetle Pyrochroa coccinea, overwinters under the bark of dead logs in northern European dioecious forests, and are thus exposed to temperatures below the melting point of their bodily fluids. Here we explore the mechanisms behind their seasonal cold hardening by characterising field samples collected monthly throughout the year. Both the lower lethal temperature and supercooling point dropped as much as 10℃ in the second half of November, reaching values around –15℃ by the beginning of December. This change was accompanied by a 320 mosmol/kg increase in hemolymph osmolality, which is a doubling compared to the summer levels. We used NMR metabolomics to identify and measure the absolute concentrations of the responsible cryoprotective C-H containing metabolites in the hemolymph. The largest increase was found to be in either glucose or trehalose, with an average total increase of 120 mM. Proline, alanine, and choline concentrations were found to increase by around 10 mM each. Contrarily, phosphocholine and phosphoethanolamine were halved, resulting in a total decrease of around 50 mM. These measurements were complemented with ion exchange chromatography measurements. This allowed us to account for all the osmotic pressure in the summer hemolymph, and the measured concentration changes explained as much as 40 % of the observed osmolality increase upon cold hardening. Preliminary results indicate that the remainder may be explained by non-colligative protein contributions.
期刊介绍:
All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.