Simon C. Scherrer , Cees de Valk , Michael Begert , Stefanie Gubler , Sven Kotlarski , Mischa Croci-Maspoli
{"title":"Estimating trends and the current climate mean in a changing climate","authors":"Simon C. Scherrer , Cees de Valk , Michael Begert , Stefanie Gubler , Sven Kotlarski , Mischa Croci-Maspoli","doi":"10.1016/j.cliser.2023.100428","DOIUrl":null,"url":null,"abstract":"<div><p>Describing the climate evolution using trend lines and estimating the current climate mean (CCM) on the local scale is an important climate service. For an increasing number of variables, accelerating climate change disqualifies the use of traditional climatological normals and long-term linear trends as CCM estimators. Although several alternatives are available and already in use, there are few comprehensive assessments of the different approaches let alone a consensus for recommending a particular method. Here we evaluate frequently used approaches that use past climate data to estimate the CCM applying several transparent criteria. The performance is assessed in a perfect model framework for the strongly changing Swiss mean temperature 1864–2099 with the centered 30-year mean as CCM benchmark. Short-term linear trends, cubic splines and local linear regression with optimized parameters all provide unbiased CCM estimates for a broad range of climate evolutions and independent of trend magnitudes. To enable broad usability, additional criteria are considered such as a wide applicability to a large number of climate variables and simplicity in terms of use, settings and communication. In the overall assessment, local linear regression emerges as a particularly promising method to describe nonlinear climate trends and to determine the CCM. The criteria-based assessment approach has proven very useful in choosing a method as objectively as possible. We present ideas for modern climate services to complement the toolbox of climate monitoring and encourage the community to develop recommendations at the international level to increase the coherence, objectivity and robustness of climate monitoring products.</p></div>","PeriodicalId":51332,"journal":{"name":"Climate Services","volume":"33 ","pages":"Article 100428"},"PeriodicalIF":4.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405880723000900/pdfft?md5=548cfc1f75db8fd3dd13d0a47eb3b9c2&pid=1-s2.0-S2405880723000900-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Services","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405880723000900","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Describing the climate evolution using trend lines and estimating the current climate mean (CCM) on the local scale is an important climate service. For an increasing number of variables, accelerating climate change disqualifies the use of traditional climatological normals and long-term linear trends as CCM estimators. Although several alternatives are available and already in use, there are few comprehensive assessments of the different approaches let alone a consensus for recommending a particular method. Here we evaluate frequently used approaches that use past climate data to estimate the CCM applying several transparent criteria. The performance is assessed in a perfect model framework for the strongly changing Swiss mean temperature 1864–2099 with the centered 30-year mean as CCM benchmark. Short-term linear trends, cubic splines and local linear regression with optimized parameters all provide unbiased CCM estimates for a broad range of climate evolutions and independent of trend magnitudes. To enable broad usability, additional criteria are considered such as a wide applicability to a large number of climate variables and simplicity in terms of use, settings and communication. In the overall assessment, local linear regression emerges as a particularly promising method to describe nonlinear climate trends and to determine the CCM. The criteria-based assessment approach has proven very useful in choosing a method as objectively as possible. We present ideas for modern climate services to complement the toolbox of climate monitoring and encourage the community to develop recommendations at the international level to increase the coherence, objectivity and robustness of climate monitoring products.
期刊介绍:
The journal Climate Services publishes research with a focus on science-based and user-specific climate information underpinning climate services, ultimately to assist society to adapt to climate change. Climate Services brings science and practice closer together. The journal addresses both researchers in the field of climate service research, and stakeholders and practitioners interested in or already applying climate services. It serves as a means of communication, dialogue and exchange between researchers and stakeholders. Climate services pioneers novel research areas that directly refer to how climate information can be applied in methodologies and tools for adaptation to climate change. It publishes best practice examples, case studies as well as theories, methods and data analysis with a clear connection to climate services. The focus of the published work is often multi-disciplinary, case-specific, tailored to specific sectors and strongly application-oriented. To offer a suitable outlet for such studies, Climate Services journal introduced a new section in the research article type. The research article contains a classical scientific part as well as a section with easily understandable practical implications for policy makers and practitioners. The journal''s focus is on the use and usability of climate information for adaptation purposes underpinning climate services.