Potential mechanism of Qinggong Shoutao pill alleviating age-associated memory decline based on integration strategy.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-12-01 Epub Date: 2023-12-25 DOI:10.1080/13880209.2023.2291689
Guiyun Pan, Lijuan Chai, Rui Chen, Qing Yuan, Zhihui Song, Wanying Feng, Jinna Wei, Zhihua Yang, Yuhang Zhang, Guinan Xie, An Yan, Qingbo Lv, Caijun Wang, Yingqiang Zhao, Yi Wang
{"title":"Potential mechanism of Qinggong Shoutao pill alleviating age-associated memory decline based on integration strategy.","authors":"Guiyun Pan, Lijuan Chai, Rui Chen, Qing Yuan, Zhihui Song, Wanying Feng, Jinna Wei, Zhihua Yang, Yuhang Zhang, Guinan Xie, An Yan, Qingbo Lv, Caijun Wang, Yingqiang Zhao, Yi Wang","doi":"10.1080/13880209.2023.2291689","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Qinggong Shoutao Wan (QGSTW) is a pill used as a traditional medicine to treat age-associated memory decline (AAMI). However, its potential mechanisms are unclear.</p><p><strong>Objective: </strong>This study elucidates the possible mechanisms of QGSTW in treating AAMI.</p><p><strong>Materials and methods: </strong>Network pharmacology and molecular docking approaches were utilized to identify the potential pathway by which QGSTW alleviates AAMI. C57BL/6J mice were divided randomly into control, model, and QGSTW groups. A mouse model of AAMI was established by d-galactose, and the pathways that QGSTW acts on to ameliorate AAMI were determined by ELISA, immunofluorescence staining and Western blotting after treatment with d-gal (100 mg/kg) and QGSTW (20 mL/kg) for 12 weeks.</p><p><strong>Results: </strong>Network pharmacology demonstrated that the targets of the active components were significantly enriched in the cAMP signaling pathway. AKT1, FOS, GRIN2B, and GRIN1 were the core target proteins. QGSTW treatment increased the discrimination index from -16.92 ± 7.06 to 23.88 ± 15.94% in the novel location test and from -19.54 ± 5.71 to 17.55 ± 6.73% in the novel object recognition test. ELISA showed that QGSTW could increase the levels of cAMP. Western blot analysis revealed that QGSTW could upregulate the expression of PKA, CREB, c-Fos, GluN1, GluA1, CaMKII-α, and SYN. Immunostaining revealed that the expression of SYN was decreased in the CA1 and DG.</p><p><strong>Discussion and conclusions: </strong>This study not only provides new insights into the mechanism of QGSTW in the treatment of AAMI but also provides important information and new research ideas for the discovery of traditional Chinese medicine compounds that can treat AAMI.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13880209.2023.2291689","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Context: Qinggong Shoutao Wan (QGSTW) is a pill used as a traditional medicine to treat age-associated memory decline (AAMI). However, its potential mechanisms are unclear.

Objective: This study elucidates the possible mechanisms of QGSTW in treating AAMI.

Materials and methods: Network pharmacology and molecular docking approaches were utilized to identify the potential pathway by which QGSTW alleviates AAMI. C57BL/6J mice were divided randomly into control, model, and QGSTW groups. A mouse model of AAMI was established by d-galactose, and the pathways that QGSTW acts on to ameliorate AAMI were determined by ELISA, immunofluorescence staining and Western blotting after treatment with d-gal (100 mg/kg) and QGSTW (20 mL/kg) for 12 weeks.

Results: Network pharmacology demonstrated that the targets of the active components were significantly enriched in the cAMP signaling pathway. AKT1, FOS, GRIN2B, and GRIN1 were the core target proteins. QGSTW treatment increased the discrimination index from -16.92 ± 7.06 to 23.88 ± 15.94% in the novel location test and from -19.54 ± 5.71 to 17.55 ± 6.73% in the novel object recognition test. ELISA showed that QGSTW could increase the levels of cAMP. Western blot analysis revealed that QGSTW could upregulate the expression of PKA, CREB, c-Fos, GluN1, GluA1, CaMKII-α, and SYN. Immunostaining revealed that the expression of SYN was decreased in the CA1 and DG.

Discussion and conclusions: This study not only provides new insights into the mechanism of QGSTW in the treatment of AAMI but also provides important information and new research ideas for the discovery of traditional Chinese medicine compounds that can treat AAMI.

基于整合策略的清宫寿桃丸缓解老年性记忆衰退的潜在机制
背景:清宫寿桃丸(QGSTW)是一种用于治疗老年性记忆衰退(AAMI)的传统药物。然而,其潜在机制尚不清楚:本研究阐明了逍遥丸治疗老年性记忆衰退的可能机制:利用网络药理学和分子对接方法确定 QGSTW 缓解 AAMI 的潜在途径。将 C57BL/6J 小鼠随机分为对照组、模型组和 QGSTW 组。用d-gal(100毫克/千克)和QGSTW(20毫升/千克)治疗12周后,通过ELISA、免疫荧光染色和Western印迹法确定QGSTW改善AAMI的作用途径:结果:网络药理学表明,活性成分的靶标在 cAMP 信号通路中明显富集。AKT1、FOS、GRIN2B 和 GRIN1 是核心靶蛋白。QGSTW 治疗可使新定位测试中的辨别指数从 -16.92 ± 7.06% 提高到 23.88 ± 15.94%,使新物体识别测试中的辨别指数从 -19.54 ± 5.71% 提高到 17.55 ± 6.73%。酶联免疫吸附试验表明,QGSTW能提高cAMP的水平。Western印迹分析显示,QGSTW能上调PKA、CREB、c-Fos、GluN1、GluA1、CaMKII-α和SYN的表达。免疫染色显示,SYN在CA1和DG中的表达减少:本研究不仅对QGSTW治疗AAMI的机制有了新的认识,而且为发现可治疗AAMI的中药复方提供了重要信息和新的研究思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信