Wenjie He , Jing Xiong , Zhiling Tang , Yingli Wang , Xiong Wang , Hui Xu , Zhen Zhao , Jian Liu , Yuechang Wei
{"title":"Localized surface plasmon resonance effect of bismuth nanoparticles in Bi/TiO2 catalysts for boosting visible light-driven CO2 reduction to CH4","authors":"Wenjie He , Jing Xiong , Zhiling Tang , Yingli Wang , Xiong Wang , Hui Xu , Zhen Zhao , Jian Liu , Yuechang Wei","doi":"10.1016/j.apcatb.2023.123651","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, the photocatalysts of metallic Bi-modified TiO<sub>2</sub><span> microsphere (namely BTO) were synthesized by one-pot solvothermal method. The localized surface plasmon resonance (LSPR) effect of introduced metallic Bi nanoparticles is beneficial to improve the absorption efficiency for visible light, and its surface hot electrons can donate to the valence band of TiO</span><sub>2</sub> for boosting the separation efficiency of light generated electron-hole pairs. BTO catalysts exhibit the super catalytic activity for visible light-driven CO<sub>2</sub> reduction with H<sub>2</sub>O to CH<sub>4</sub>. The formation amount and selectivity of CH<sub>4</sub> product over BTO-2 catalyst are 49.12 μmol g<sup>−1</sup> and 85.48 % for 4 h, respectively. Based on the results of in-situ DRIFTS and density functional theory calculation, the mechanism for photocatalytic CO<sub>2</sub> reduction is proposed: the visible light-driven LSPR effect on BTO catalyst can boost the key step of CO<sub>2</sub>* -to-HCO* for promoting selective generation of CH<sub>4</sub> product. It inspires the design of efficient photocatalysts for CO<sub>2</sub> conversion.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337323012948","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, the photocatalysts of metallic Bi-modified TiO2 microsphere (namely BTO) were synthesized by one-pot solvothermal method. The localized surface plasmon resonance (LSPR) effect of introduced metallic Bi nanoparticles is beneficial to improve the absorption efficiency for visible light, and its surface hot electrons can donate to the valence band of TiO2 for boosting the separation efficiency of light generated electron-hole pairs. BTO catalysts exhibit the super catalytic activity for visible light-driven CO2 reduction with H2O to CH4. The formation amount and selectivity of CH4 product over BTO-2 catalyst are 49.12 μmol g−1 and 85.48 % for 4 h, respectively. Based on the results of in-situ DRIFTS and density functional theory calculation, the mechanism for photocatalytic CO2 reduction is proposed: the visible light-driven LSPR effect on BTO catalyst can boost the key step of CO2* -to-HCO* for promoting selective generation of CH4 product. It inspires the design of efficient photocatalysts for CO2 conversion.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.