Label-free electrochemical immunosensing of glial fibrillary acidic protein (GFAP) at synthesized rGO/MoS2/AgNPs nanocomposite. Application to the determination in human cerebrospinal fluid
Lorena García-Rodrigo , Claudia Ramos-López , Esther Sánchez-Tirado, Lourdes Agüí, Araceli González-Cortés, Paloma Yáñez-Sedeño, José M. Pingarrón
{"title":"Label-free electrochemical immunosensing of glial fibrillary acidic protein (GFAP) at synthesized rGO/MoS2/AgNPs nanocomposite. Application to the determination in human cerebrospinal fluid","authors":"Lorena García-Rodrigo , Claudia Ramos-López , Esther Sánchez-Tirado, Lourdes Agüí, Araceli González-Cortés, Paloma Yáñez-Sedeño, José M. Pingarrón","doi":"10.1016/j.talanta.2023.125597","DOIUrl":null,"url":null,"abstract":"<div><p><span>An electrochemical bioplatform involving screen-printed carbon electrodes modified with rGO/MoS</span><sub>2</sub>/AgNPs nanocomposites, the covalent immobilization of the specific capture antibody, and label-free detection has been developed for the determination of Glial Fibrillary Acidic Protein (GFAP). The resulting immunosensor profits the benefits of the rGO high conductivity, the pseudo-peroxidase activity of MoS<sub>2</sub><span><span> and the electrocatalytic effect provided by AgNPs for improving the reduction current responses of hydrogen peroxide at the electrode surface. GFAP is a biomarker of central nervous system injuries has been proposed for the detection and monitoring of neurological diseases as epilepsy, encephalitis, or multiple sclerosis. For the first time, amperometric detection of the immunosensing event was performed by measuring the electrocatalytic response of hydrogen peroxide reduction at the modified electrode. Several techniques including scanning (SEM) and transmission (TEM) </span>electron microscopies<span> were used for the characterization of the synthesized composite whilst electrochemical impedance spectroscopy (EIS) using the redox probe Fe(CN)</span></span><sub>6</sub><sup>3−/4−</sup> was employed to evaluate the success of the steps implied in the fabrication of the immunosensor. After optimization of the involved experimental variables, a linear calibration plot for GFAP was constructed over the 0.6–100 ng mL<sup>−1</sup> range, and a detection limit of 0.16 ng mL<sup>−1</sup> was achieved. The developed immunosensor was successfully applied to the determination of GFAP in human cerebrospinal fluid (CSF) of patients diagnosed with encephalitis.</p></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"270 ","pages":"Article 125597"},"PeriodicalIF":5.6000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914023013486","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An electrochemical bioplatform involving screen-printed carbon electrodes modified with rGO/MoS2/AgNPs nanocomposites, the covalent immobilization of the specific capture antibody, and label-free detection has been developed for the determination of Glial Fibrillary Acidic Protein (GFAP). The resulting immunosensor profits the benefits of the rGO high conductivity, the pseudo-peroxidase activity of MoS2 and the electrocatalytic effect provided by AgNPs for improving the reduction current responses of hydrogen peroxide at the electrode surface. GFAP is a biomarker of central nervous system injuries has been proposed for the detection and monitoring of neurological diseases as epilepsy, encephalitis, or multiple sclerosis. For the first time, amperometric detection of the immunosensing event was performed by measuring the electrocatalytic response of hydrogen peroxide reduction at the modified electrode. Several techniques including scanning (SEM) and transmission (TEM) electron microscopies were used for the characterization of the synthesized composite whilst electrochemical impedance spectroscopy (EIS) using the redox probe Fe(CN)63−/4− was employed to evaluate the success of the steps implied in the fabrication of the immunosensor. After optimization of the involved experimental variables, a linear calibration plot for GFAP was constructed over the 0.6–100 ng mL−1 range, and a detection limit of 0.16 ng mL−1 was achieved. The developed immunosensor was successfully applied to the determination of GFAP in human cerebrospinal fluid (CSF) of patients diagnosed with encephalitis.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.