Topological stability for homeomorphisms with global attractor

Carlos Arnoldo Morales, Nguyen Thanh Nguyen
{"title":"Topological stability for homeomorphisms with global attractor","authors":"Carlos Arnoldo Morales, Nguyen Thanh Nguyen","doi":"10.4153/s0008439523000917","DOIUrl":null,"url":null,"abstract":"<p>We prove that every topologically stable homeomorphism with global attractor of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231221035053529-0023:S0008439523000917:S0008439523000917_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}^n$</span></span></img></span></span> is topologically stable on its global attractor. The converse is not true. On the other hand, if a homeomorphism with global attractor of a locally compact metric space is expansive and has the shadowing property, then it is topologically stable. This extends the Walters stability theorem (Walters, <span>On the pseudo-orbit tracing property and its relationship to stability. The structure of attractors in dynamical systems</span>, 1978, pp. 231–244).</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439523000917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that every topologically stable homeomorphism with global attractor of Abstract Image$\mathbb {R}^n$ is topologically stable on its global attractor. The converse is not true. On the other hand, if a homeomorphism with global attractor of a locally compact metric space is expansive and has the shadowing property, then it is topologically stable. This extends the Walters stability theorem (Walters, On the pseudo-orbit tracing property and its relationship to stability. The structure of attractors in dynamical systems, 1978, pp. 231–244).

具有全局吸引子的同态拓扑稳定性
我们证明,$\mathbb {R}^n$ 的每一个具有全局吸引子的拓扑稳定同构在其全局吸引子上都是拓扑稳定的。反之则不成立。另一方面,如果局部紧凑度量空间中具有全局吸引子的同态是膨胀的,并且具有阴影性质,那么它就是拓扑稳定的。这就扩展了沃尔特斯稳定性定理(沃尔特斯,《论伪轨道追踪特性及其与稳定性的关系》,伦敦:伦敦大学出版社,2006 年)。The structure of attractors in dynamical systems, 1978, pp.)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信