Anchoring defective metal-free catalysts on montmorillonite nanosheets for tetracycline removal: synergetic adsorption-catalysis and mechanism insights†
Min Li, Xudong Liu, Zhinan Xie, Chunfang Du and Yiguo Su
{"title":"Anchoring defective metal-free catalysts on montmorillonite nanosheets for tetracycline removal: synergetic adsorption-catalysis and mechanism insights†","authors":"Min Li, Xudong Liu, Zhinan Xie, Chunfang Du and Yiguo Su","doi":"10.1039/D3VA00331K","DOIUrl":null,"url":null,"abstract":"<p >A one-step thermal polymerization approach was adopted to combine C<small><sub>3</sub></small>N<small><sub>5</sub></small> with montmorillonite nanosheets (MMT Ns) to form <em>x</em>CN-MMT for the degradation of pollutants in water. Benefitting from the abundant hydroxyl groups on the MMT surfaces, double defects (–C<img>N and N defects) were introduced in <em>x</em>CN-MMT catalysts to promote the adsorption of tetracycline (TC), peroxymonosulfate (PMS), and oxygen. 10CN-MMT exhibited superior adsorption performance toward TC, with the adsorption capacity being 5.65-fold that of MMT Ns and 2.64-fold that of C<small><sub>3</sub></small>N<small><sub>5</sub></small>. Further, 10CN-MMT exhibited better PMS activation performance than MMT Ns and C<small><sub>3</sub></small>N<small><sub>5</sub></small>, which could degrade 95% of TC within 120 min. Moreover, the total organic carbon (TOC) removal efficiency of the present system reached 81.1%, and the chemical oxygen demand (COD) decreased from 50.7 to 12.2 mg L<small><sup>−1</sup></small>. The degradation process of TC was characterized using liquid chromatography-tandem mass spectrometry (LC-MS), and a reasonable degradation pathway and catalytic mechanism were given by combining with active species analysis. The toxicological analysis of the degradation products also showed a significant decrease in toxicity. The degradation experiments in different water environments were also simulated, and it was found that 10CN-MMT showed good adsorption effects. This study provides a green metal-free clay-based catalyst and shows good applicability in removing antibiotics.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d3va00331k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/va/d3va00331k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
A one-step thermal polymerization approach was adopted to combine C3N5 with montmorillonite nanosheets (MMT Ns) to form xCN-MMT for the degradation of pollutants in water. Benefitting from the abundant hydroxyl groups on the MMT surfaces, double defects (–CN and N defects) were introduced in xCN-MMT catalysts to promote the adsorption of tetracycline (TC), peroxymonosulfate (PMS), and oxygen. 10CN-MMT exhibited superior adsorption performance toward TC, with the adsorption capacity being 5.65-fold that of MMT Ns and 2.64-fold that of C3N5. Further, 10CN-MMT exhibited better PMS activation performance than MMT Ns and C3N5, which could degrade 95% of TC within 120 min. Moreover, the total organic carbon (TOC) removal efficiency of the present system reached 81.1%, and the chemical oxygen demand (COD) decreased from 50.7 to 12.2 mg L−1. The degradation process of TC was characterized using liquid chromatography-tandem mass spectrometry (LC-MS), and a reasonable degradation pathway and catalytic mechanism were given by combining with active species analysis. The toxicological analysis of the degradation products also showed a significant decrease in toxicity. The degradation experiments in different water environments were also simulated, and it was found that 10CN-MMT showed good adsorption effects. This study provides a green metal-free clay-based catalyst and shows good applicability in removing antibiotics.