{"title":"Deep transfer learning for visual analysis and attribution of paintings by Raphael","authors":"","doi":"10.1186/s40494-023-01094-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Visual analysis and authentication of artworks are challenging tasks central to art history and criticism. This preliminary study presents a computational tool for scholars examining and authenticating a restricted class of paintings, with a specific focus on the paintings of Raffaello Sanzio da Urbino, more popularly known as Raphael. We applied transfer learning to the ResNet50 deep neural network for feature extraction and used a support vector machine (SVM) binary classifier in support of authentication. Edge detection and analysis algorithms, considered to be crucial for capturing the essence of Raphael’s artistic style, including the brushwork signatures, were also integrated and are used as an authentication tool. The machine learning approach we have developed demonstrates an accuracy of 98% in image-based classification tasks during validation using a test set of well known and authentic paintings by Raphael. Of course, a full authentication protocol relies on provenance, history, material studies, iconography, studies of a work’s condition, and more. Our work, then, contributes to just a portion of a full authentication protocol. Our findings suggest that machine learning methods, properly employed by experts aware of context, may enhance and expand traditional visual analysis for problems in art authentication.</p>","PeriodicalId":13109,"journal":{"name":"Heritage Science","volume":"37 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40494-023-01094-0","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Visual analysis and authentication of artworks are challenging tasks central to art history and criticism. This preliminary study presents a computational tool for scholars examining and authenticating a restricted class of paintings, with a specific focus on the paintings of Raffaello Sanzio da Urbino, more popularly known as Raphael. We applied transfer learning to the ResNet50 deep neural network for feature extraction and used a support vector machine (SVM) binary classifier in support of authentication. Edge detection and analysis algorithms, considered to be crucial for capturing the essence of Raphael’s artistic style, including the brushwork signatures, were also integrated and are used as an authentication tool. The machine learning approach we have developed demonstrates an accuracy of 98% in image-based classification tasks during validation using a test set of well known and authentic paintings by Raphael. Of course, a full authentication protocol relies on provenance, history, material studies, iconography, studies of a work’s condition, and more. Our work, then, contributes to just a portion of a full authentication protocol. Our findings suggest that machine learning methods, properly employed by experts aware of context, may enhance and expand traditional visual analysis for problems in art authentication.
期刊介绍:
Heritage Science is an open access journal publishing original peer-reviewed research covering:
Understanding of the manufacturing processes, provenances, and environmental contexts of material types, objects, and buildings, of cultural significance including their historical significance.
Understanding and prediction of physico-chemical and biological degradation processes of cultural artefacts, including climate change, and predictive heritage studies.
Development and application of analytical and imaging methods or equipments for non-invasive, non-destructive or portable analysis of artwork and objects of cultural significance to identify component materials, degradation products and deterioration markers.
Development and application of invasive and destructive methods for understanding the provenance of objects of cultural significance.
Development and critical assessment of treatment materials and methods for artwork and objects of cultural significance.
Development and application of statistical methods and algorithms for data analysis to further understanding of culturally significant objects.
Publication of reference and corpus datasets as supplementary information to the statistical and analytical studies above.
Description of novel technologies that can assist in the understanding of cultural heritage.