Antioxidant Activity of Auricularia auricula Polysaccharides with Different Molecular Weights and Cytotoxicity Difference of Polysaccharides Regulated CaOx to HK-2 Cells
{"title":"Antioxidant Activity of Auricularia auricula Polysaccharides with Different Molecular Weights and Cytotoxicity Difference of Polysaccharides Regulated CaOx to HK-2 Cells","authors":"Bao-Li Heng, Fan-Yu Wu, Jing-Hong Liu, Jian-Ming Ouyang","doi":"10.1155/2023/9968886","DOIUrl":null,"url":null,"abstract":"<i>Objective</i>. This study aimed to investigate the growth of calcium oxalate (CaOx) crystals regulated by <i>Auricularia auricular</i> polysaccharides (AAPs) with different viscosity-average molecular weights (<span><svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 16.9831 11.9453\" width=\"16.9831pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.22,3.132)\"></path></g></svg>),</span> the toxicity of AAP-regulated CaOx crystals toward HK-2 cells, and the prevention and treatment capabilities of AAPs for CaOx stones. <i>Methods</i>. The scavenging capability and reducing capacity of four kinds of AAPs (<svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 16.9831 11.9453\" width=\"16.9831pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-78\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.22,3.132)\"><use xlink:href=\"#g185-40\"></use></g></svg> of 31.52, 11.82, 5.86, and 3.34 kDa) on hydroxyl, ABTS, and DPPH free radicals and their capability to chelate divalent iron ions were detected. AAP-regulated CaOx crystals were evaluated by using zeta potential, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. The cytotoxicity of AAP-regulated crystals was evaluated through examination of cell viability, cell death, malondialdehyde (MDA) content, and cell surface hyaluronic acid (HA) expression. <i>Results</i>. The in vitro antioxidant activities of the four AAPs were observed in the following order: AAP0 < AAP1 < AAP2 < AAP3. Thus, AAP3, which had the smallest <span><svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 16.9831 11.9453\" width=\"16.9831pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-78\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.22,3.132)\"><use xlink:href=\"#g185-40\"></use></g></svg>,</span> had the strongest antioxidant activity. AAPs can inhibit the growth of CaOx monohydrate (COM), induce the formation of CaOx dihydrate (COD), and reduce the degree of crystal aggregation, with AAP3 exhibiting the strongest capability. Cell experiments showed the lowest cytotoxicity in AAP3-regulated CaOx crystals, along with the lowest MDA content, HA expression, and cell mortality. In addition, COD presented less cytotoxicity than COM. Meanwhile, the cytotoxicity of blunt crystals was less than that of sharp crystals. <i>Conclusion</i>. AAPs, particularly AAP3, showed an excellent antioxidative capability in vitro, and AAP3-regulated CaOx crystals presented minimal cytotoxicity.","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"41 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinorganic Chemistry and Applications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2023/9968886","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. This study aimed to investigate the growth of calcium oxalate (CaOx) crystals regulated by Auricularia auricular polysaccharides (AAPs) with different viscosity-average molecular weights (), the toxicity of AAP-regulated CaOx crystals toward HK-2 cells, and the prevention and treatment capabilities of AAPs for CaOx stones. Methods. The scavenging capability and reducing capacity of four kinds of AAPs ( of 31.52, 11.82, 5.86, and 3.34 kDa) on hydroxyl, ABTS, and DPPH free radicals and their capability to chelate divalent iron ions were detected. AAP-regulated CaOx crystals were evaluated by using zeta potential, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. The cytotoxicity of AAP-regulated crystals was evaluated through examination of cell viability, cell death, malondialdehyde (MDA) content, and cell surface hyaluronic acid (HA) expression. Results. The in vitro antioxidant activities of the four AAPs were observed in the following order: AAP0 < AAP1 < AAP2 < AAP3. Thus, AAP3, which had the smallest , had the strongest antioxidant activity. AAPs can inhibit the growth of CaOx monohydrate (COM), induce the formation of CaOx dihydrate (COD), and reduce the degree of crystal aggregation, with AAP3 exhibiting the strongest capability. Cell experiments showed the lowest cytotoxicity in AAP3-regulated CaOx crystals, along with the lowest MDA content, HA expression, and cell mortality. In addition, COD presented less cytotoxicity than COM. Meanwhile, the cytotoxicity of blunt crystals was less than that of sharp crystals. Conclusion. AAPs, particularly AAP3, showed an excellent antioxidative capability in vitro, and AAP3-regulated CaOx crystals presented minimal cytotoxicity.
期刊介绍:
Bioinorganic Chemistry and Applications is primarily devoted to original research papers, but also publishes review articles, editorials, and letter to the editor in the general field of bioinorganic chemistry and its applications. Its scope includes all aspects of bioinorganic chemistry, including bioorganometallic chemistry and applied bioinorganic chemistry. The journal welcomes papers relating to metalloenzymes and model compounds, metal-based drugs, biomaterials, biocatalysis and bioelectronics, metals in biology and medicine, metals toxicology and metals in the environment, metal interactions with biomolecules and spectroscopic applications.