Synthesis and characterization of indium-doped ZnO nanoparticles by coprecipitation method for highly photo-responsive UV light sensors

Yogesh B. Waghadkar , Govind Umarji , Shankar S. Kekade , Sunit Rane , Ratna chauhan , Muthupandian Ashokkumar , Suresh W. Gosavi
{"title":"Synthesis and characterization of indium-doped ZnO nanoparticles by coprecipitation method for highly photo-responsive UV light sensors","authors":"Yogesh B. Waghadkar ,&nbsp;Govind Umarji ,&nbsp;Shankar S. Kekade ,&nbsp;Sunit Rane ,&nbsp;Ratna chauhan ,&nbsp;Muthupandian Ashokkumar ,&nbsp;Suresh W. Gosavi","doi":"10.1016/j.sintl.2023.100271","DOIUrl":null,"url":null,"abstract":"<div><p>In this investigation, we employed a cost-efficient co-precipitation technique to synthesize nanostructures of Indium-doped ZnO, incorporating varying percentages of Indium (0.25 %, 0.5 %, 1 %, 2 %, and 4 %) into the ZnO lattice. These Indium atoms were introduced either by replacing oxygen (O<sub>2</sub>) or occupying tetrahedral interstitial spaces within the structure. The resultant materials exhibited an average crystal size ranging from approximately 5 to 10 nm and displayed a highly crystalline nature. The UV–visible spectroscopy of these synthesized materials, revealing an excitation spectrum spanning 380 nm–395 nm. Photoluminescence measurements showed two distinct emission peaks at 390 nm and 471 nm, originates from the recombination of the free excitons through an exciton-exciton collision process and the presence of defects or impurities in the In–ZnO nanostructures. Defects in the crystal lattice, such as oxygen vacancies or interstitial defects, can create energy levels within the bandgap. Subsequently, we evaluated the suitability of these Indium-doped ZnO nanostructures for light sensor applications. Response and recovery times to infrared (IR), visible, and ultraviolet (UV) light was recorded. Remarkably, the nanostructures exhibited exceptional response and recovery times, in UV light compared to their performance with IR and visible light. This significant performance of synthesized materials in UV light shows the cost-effective co-precipitation method in fabricating Indium-doped ZnO nanostructures for UV light sensing applications.</p></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666351123000451/pdfft?md5=399dd7a43f4a3541ec1f1ef14f13cfa5&pid=1-s2.0-S2666351123000451-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351123000451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this investigation, we employed a cost-efficient co-precipitation technique to synthesize nanostructures of Indium-doped ZnO, incorporating varying percentages of Indium (0.25 %, 0.5 %, 1 %, 2 %, and 4 %) into the ZnO lattice. These Indium atoms were introduced either by replacing oxygen (O2) or occupying tetrahedral interstitial spaces within the structure. The resultant materials exhibited an average crystal size ranging from approximately 5 to 10 nm and displayed a highly crystalline nature. The UV–visible spectroscopy of these synthesized materials, revealing an excitation spectrum spanning 380 nm–395 nm. Photoluminescence measurements showed two distinct emission peaks at 390 nm and 471 nm, originates from the recombination of the free excitons through an exciton-exciton collision process and the presence of defects or impurities in the In–ZnO nanostructures. Defects in the crystal lattice, such as oxygen vacancies or interstitial defects, can create energy levels within the bandgap. Subsequently, we evaluated the suitability of these Indium-doped ZnO nanostructures for light sensor applications. Response and recovery times to infrared (IR), visible, and ultraviolet (UV) light was recorded. Remarkably, the nanostructures exhibited exceptional response and recovery times, in UV light compared to their performance with IR and visible light. This significant performance of synthesized materials in UV light shows the cost-effective co-precipitation method in fabricating Indium-doped ZnO nanostructures for UV light sensing applications.

共沉淀法合成和表征掺铟氧化锌纳米粒子,用于高光响应紫外光传感器
在这项研究中,我们采用了一种具有成本效益的共沉淀技术来合成掺铟氧化锌的纳米结构,在氧化锌晶格中加入了不同比例的铟(0.25%、0.5%、1%、2% 和 4%)。这些铟原子是通过取代氧(O2)或占据结构中的四面体间隙空间而引入的。这些材料的平均晶体尺寸约为 5 至 10 纳米,具有高度结晶性。这些合成材料的紫外可见光谱显示,其激发光谱范围为 380 纳米至 395 纳米。光致发光测量结果表明,在 390 纳米和 471 纳米处有两个不同的发射峰,这源于自由激子通过激子-激子碰撞过程进行的重组,以及 In-ZnO 纳米结构中存在的缺陷或杂质。晶格中的缺陷,如氧空位或间隙缺陷,会在带隙内产生能级。随后,我们评估了这些掺铟氧化锌纳米结构在光传感器应用中的适用性。我们记录了对红外线(IR)、可见光和紫外线(UV)的响应和恢复时间。值得注意的是,与红外光和可见光相比,纳米结构在紫外光下的响应和恢复时间更长。合成材料在紫外光下的显著性能表明,用共沉淀法制造掺铟氧化锌纳米结构用于紫外光传感应用具有成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信