Discriminative explicit instance selection for implicit discourse relation classification

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wei Song, Hongfei Han, Xu Han, Miaomiao Cheng, Jiefu Gong, Shijin Wang, Ting Liu
{"title":"Discriminative explicit instance selection for implicit discourse relation classification","authors":"Wei Song, Hongfei Han, Xu Han, Miaomiao Cheng, Jiefu Gong, Shijin Wang, Ting Liu","doi":"10.1007/s11704-023-3058-2","DOIUrl":null,"url":null,"abstract":"<p>Discourse relation classification is a fundamental task for discourse analysis, which is essential for understanding the structure and connection of texts. Implicit discourse relation classification aims to determine the relationship between adjacent sentences and is very challenging because it lacks explicit discourse connectives as linguistic cues and sufficient annotated training data. In this paper, we propose a discriminative instance selection method to construct synthetic implicit discourse relation data from easy-to-collect explicit discourse relations. An expanded instance consists of an argument pair and its sense label. We introduce the argument pair type classification task, which aims to distinguish between implicit and explicit argument pairs and select the explicit argument pairs that are most similar to natural implicit argument pairs for data expansion. We also propose a simple label-smoothing technique to assign robust sense labels for the selected argument pairs. We evaluate our method on PDTB 2.0 and PDTB 3.0. The results show that our method can consistently improve the performance of the baseline model, and achieve competitive results with the state-of-the-art models.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"30 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-3058-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Discourse relation classification is a fundamental task for discourse analysis, which is essential for understanding the structure and connection of texts. Implicit discourse relation classification aims to determine the relationship between adjacent sentences and is very challenging because it lacks explicit discourse connectives as linguistic cues and sufficient annotated training data. In this paper, we propose a discriminative instance selection method to construct synthetic implicit discourse relation data from easy-to-collect explicit discourse relations. An expanded instance consists of an argument pair and its sense label. We introduce the argument pair type classification task, which aims to distinguish between implicit and explicit argument pairs and select the explicit argument pairs that are most similar to natural implicit argument pairs for data expansion. We also propose a simple label-smoothing technique to assign robust sense labels for the selected argument pairs. We evaluate our method on PDTB 2.0 and PDTB 3.0. The results show that our method can consistently improve the performance of the baseline model, and achieve competitive results with the state-of-the-art models.

用于隐式话语关系分类的辨证显式实例选择
话语关系分类是话语分析的一项基本任务,对于理解文本的结构和联系至关重要。隐式话语关系分类旨在确定相邻句子之间的关系,由于缺乏显式话语连接词作为语言线索和足够的注释训练数据,因此非常具有挑战性。在本文中,我们提出了一种判别实例选择方法,从易于收集的显式话语关系中构建合成的隐式话语关系数据。扩展实例由参数对及其意义标签组成。我们介绍了论据对类型分类任务,该任务旨在区分隐式和显式论据对,并选择与自然隐式论据对最相似的显式论据对进行数据扩展。我们还提出了一种简单的标签平滑技术,为所选参数对分配稳健的意义标签。我们在 PDTB 2.0 和 PDTB 3.0 上对我们的方法进行了评估。结果表明,我们的方法可以持续提高基线模型的性能,并取得与最先进模型相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信