ILIDViz: An Incremental Learning-Based Visual Analysis System for Network Anomaly Detection

Q1 Computer Science
Xuefei Tian, Zhiyuan Wu, JunXiang Cao, Shengtao Chen, Xiaoju Dong
{"title":"ILIDViz: An Incremental Learning-Based Visual Analysis System for Network Anomaly Detection","authors":"Xuefei Tian,&nbsp;Zhiyuan Wu,&nbsp;JunXiang Cao,&nbsp;Shengtao Chen,&nbsp;Xiaoju Dong","doi":"10.1016/j.vrih.2023.06.009","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>With the development of information technology, network traffic logs mixed with various kinds of cyber-attacks have grown explosively. Traditional intrusion detection systems (IDS) have limited ability to discover new inconstant patterns and identify malicious traffic traces in real-time. It is urgent to implement more effective intrusion detection technologies to protect computer security.</p></div><div><h3>Methods</h3><p>In this paper, we design a hybrid IDS, combining our incremental learning model (KAN-SOINN) and active learning, to learn new log patterns and detect various network anomalies in real-time.</p></div><div><h3>Results &amp; Conclusions</h3><p>The experimental results on the NSLKDD dataset show that the KAN-SOINN can be improved continuously and detect malicious logs more effectively. Meanwhile, the comparative experiments prove that using a hybrid query strategy in active learning can improve the model learning efficiency.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"5 6","pages":"Pages 471-489"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096579623000372/pdf?md5=4b6332c477d34f662bbd8d1f6d5110ea&pid=1-s2.0-S2096579623000372-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579623000372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Background

With the development of information technology, network traffic logs mixed with various kinds of cyber-attacks have grown explosively. Traditional intrusion detection systems (IDS) have limited ability to discover new inconstant patterns and identify malicious traffic traces in real-time. It is urgent to implement more effective intrusion detection technologies to protect computer security.

Methods

In this paper, we design a hybrid IDS, combining our incremental learning model (KAN-SOINN) and active learning, to learn new log patterns and detect various network anomalies in real-time.

Results & Conclusions

The experimental results on the NSLKDD dataset show that the KAN-SOINN can be improved continuously and detect malicious logs more effectively. Meanwhile, the comparative experiments prove that using a hybrid query strategy in active learning can improve the model learning efficiency.

ILIDViz:基于增量学习的网络异常检测可视分析系统
背景随着信息技术的发展,混杂着各种网络攻击的网络流量日志呈爆炸式增长。传统的入侵检测系统(IDS)发现新的不稳定模式和实时识别恶意流量痕迹的能力有限。方法本文设计了一种混合 IDS,将增量学习模型(KAN-SOINN)和主动学习相结合,学习新的日志模式,实时检测各种网络异常情况。结果& 结论在 NSLKDD 数据集上的实验结果表明,KAN-SOINN 可以不断改进,更有效地检测恶意日志。同时,对比实验证明,在主动学习中使用混合查询策略可以提高模型学习效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信