Shuying Wang , Tingyu Liu , Xiangcou Zheng , Junsheng Yang , Feng Yang
{"title":"Dynamic collapse characteristics of the tunnel face induced by the shutdown of earth pressure balance shields (EPB): A 3D material point method study","authors":"Shuying Wang , Tingyu Liu , Xiangcou Zheng , Junsheng Yang , Feng Yang","doi":"10.1016/j.undsp.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>The collapse of the tunnel face is a prevalent geological disaster in tunnelling. This study employs a three-dimensional (3D) material point method (MPM) to simulate the dynamic collapse process and post-failure mechanisms of the tunnel face. The specific focus is on the scenario where the auxiliary air pressure balanced shield with a partially filled chamber is shut down. To assess the suitability of the 3D MPM, numerical solutions are compared with the results from small-scale experimental tests. Subsequently, a series of large-scale numerical simulations is conducted to explore the dynamic collapse characteristics of the tunnel face induced by the shutdown of the EPB shield under various support air pressures and cutter head conditions. The temporal evolution of the accumulated soil masses in the soil chamber and ground responses under different support air pressures, cutter head types and opening ratios are discussed. In particular, the associated surface subsidence due to the tunnel face collapse is determined and compared with empirical solutions. Numerical results confirm the applicability of the 3D MPM for simulating the large-scale tunnel face collapse scenarios, spanning from small to large deformation analysis.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967423001678/pdfft?md5=54e3cfb376ea496c273aef31cdefac37&pid=1-s2.0-S2467967423001678-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967423001678","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The collapse of the tunnel face is a prevalent geological disaster in tunnelling. This study employs a three-dimensional (3D) material point method (MPM) to simulate the dynamic collapse process and post-failure mechanisms of the tunnel face. The specific focus is on the scenario where the auxiliary air pressure balanced shield with a partially filled chamber is shut down. To assess the suitability of the 3D MPM, numerical solutions are compared with the results from small-scale experimental tests. Subsequently, a series of large-scale numerical simulations is conducted to explore the dynamic collapse characteristics of the tunnel face induced by the shutdown of the EPB shield under various support air pressures and cutter head conditions. The temporal evolution of the accumulated soil masses in the soil chamber and ground responses under different support air pressures, cutter head types and opening ratios are discussed. In particular, the associated surface subsidence due to the tunnel face collapse is determined and compared with empirical solutions. Numerical results confirm the applicability of the 3D MPM for simulating the large-scale tunnel face collapse scenarios, spanning from small to large deformation analysis.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.