Erin Heeschen , Elena DeLucia , Yilmaz Arin Manav , Daisy Roberts , Benyamin Davaji , Magda H. Barecka
{"title":"Low cost 3D printable flow reactors for electrochemistry","authors":"Erin Heeschen , Elena DeLucia , Yilmaz Arin Manav , Daisy Roberts , Benyamin Davaji , Magda H. Barecka","doi":"10.1016/j.ohx.2023.e00505","DOIUrl":null,"url":null,"abstract":"<div><p>Transition to carbon neutrality requires the development of more sustainable pathways to synthesize the next generation of chemical building blocks. Electrochemistry is a promising pathway to achieve this goal, as it allows for the use of renewable energy to drive chemical transformations. While the electroreduction of carbon dioxide (CO<sub>2</sub>) and hydrogen evolution are attracting significant research interest, fundamental challenges exist in moving the research focus toward performing these reactions on scales relevant to industrial applications. To bridge this gap, we aim to facilitate researchers' access to flow reactors, which allow the characterization of electrochemical transformations under conditions closer to those deployed in the industry. Here, we provide a 3D-printable flow cell design (manufacturing cost < $5), which consists of several plates, offering a customizable alternative to commercially available flow reactors (cost > $6,000). The proposed design and detailed build instructions allow the performance of a wide variety of chemical reactions in flow, including gas and liquid phase electroreduction, electro(less)plating, and photoelectrochemical reactions, providing researchers with more flexibility and control over their experiments. By offering an accessible, low-cost reactor alternative, we reduce the barriers to performing research on sustainable electrochemistry, supporting the global efforts necessary to realize the paradigm shift in chemical manufacturing.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067223001128/pdfft?md5=65c9d9c3e9609d51e755aa78794ba66c&pid=1-s2.0-S2468067223001128-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067223001128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Transition to carbon neutrality requires the development of more sustainable pathways to synthesize the next generation of chemical building blocks. Electrochemistry is a promising pathway to achieve this goal, as it allows for the use of renewable energy to drive chemical transformations. While the electroreduction of carbon dioxide (CO2) and hydrogen evolution are attracting significant research interest, fundamental challenges exist in moving the research focus toward performing these reactions on scales relevant to industrial applications. To bridge this gap, we aim to facilitate researchers' access to flow reactors, which allow the characterization of electrochemical transformations under conditions closer to those deployed in the industry. Here, we provide a 3D-printable flow cell design (manufacturing cost < $5), which consists of several plates, offering a customizable alternative to commercially available flow reactors (cost > $6,000). The proposed design and detailed build instructions allow the performance of a wide variety of chemical reactions in flow, including gas and liquid phase electroreduction, electro(less)plating, and photoelectrochemical reactions, providing researchers with more flexibility and control over their experiments. By offering an accessible, low-cost reactor alternative, we reduce the barriers to performing research on sustainable electrochemistry, supporting the global efforts necessary to realize the paradigm shift in chemical manufacturing.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.