Removal of endocrine disrupting chemicals from water through urethane functionalization of microfiltration membranes via electron beam irradiation

IF 6.1 2区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL
Zahra Niavarani, Daniel Breite, Muhammad Yasir, Vladimir Sedlarik, Andrea Prager, Nadja Schönherr, Bernd Abel, Roger Gläser, Agnes Schulze
{"title":"Removal of endocrine disrupting chemicals from water through urethane functionalization of microfiltration membranes via electron beam irradiation","authors":"Zahra Niavarani, Daniel Breite, Muhammad Yasir, Vladimir Sedlarik, Andrea Prager, Nadja Schönherr, Bernd Abel, Roger Gläser, Agnes Schulze","doi":"10.1007/s11783-024-1805-6","DOIUrl":null,"url":null,"abstract":"<p>Polyethersulphone (PES) membranes modified with urethane functional groups were prepared through an interfacial reaction using electron beam irradiation. The removal of eight endocrine disrupting chemicals (EDCs) was studied using both pristine and functionalized PES membranes. The prepared membranes underwent characterization using several techniques, including attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy, contact angle analysis, and measurements of pure water flux. Furthermore, dynamic adsorption experiments were conducted to evaluate the adsorption mechanism of the prepared membrane toward the eight EDCs. The urethane functionalized membranes were hydrophilic (52° contact angle) and maintained a high permeate flux (26000 L/h m<sup>2</sup> bar) throughout the filtration process. Dynamic adsorption results demonstrated that the introduction of urethane functional groups on the membranes significantly enhanced the removal efficiency of 17β-estradiol, estriol, bisphenol A, estrone, ethinylestradiol, and equilin. The adsorption loading of 17β-estradiol on the functionalized PES membrane was 6.7 ± 0.7 mg/m<sup>2</sup>, exhibiting a 5-fold increase compared to the unmodified PES membrane. The membranes were successfully regenerated and reused for three adsorption cycles without experiencing any loss of adsorption capacity.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1805-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polyethersulphone (PES) membranes modified with urethane functional groups were prepared through an interfacial reaction using electron beam irradiation. The removal of eight endocrine disrupting chemicals (EDCs) was studied using both pristine and functionalized PES membranes. The prepared membranes underwent characterization using several techniques, including attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy, contact angle analysis, and measurements of pure water flux. Furthermore, dynamic adsorption experiments were conducted to evaluate the adsorption mechanism of the prepared membrane toward the eight EDCs. The urethane functionalized membranes were hydrophilic (52° contact angle) and maintained a high permeate flux (26000 L/h m2 bar) throughout the filtration process. Dynamic adsorption results demonstrated that the introduction of urethane functional groups on the membranes significantly enhanced the removal efficiency of 17β-estradiol, estriol, bisphenol A, estrone, ethinylestradiol, and equilin. The adsorption loading of 17β-estradiol on the functionalized PES membrane was 6.7 ± 0.7 mg/m2, exhibiting a 5-fold increase compared to the unmodified PES membrane. The membranes were successfully regenerated and reused for three adsorption cycles without experiencing any loss of adsorption capacity.

Abstract Image

通过电子束辐照对微滤膜进行聚氨酯功能化处理,去除水中的内分泌干扰化学物质
利用电子束辐照通过界面反应制备了聚醚砜(PES)膜,并对其进行了聚氨酯官能团修饰。研究使用原始和功能化的聚醚砜膜去除八种内分泌干扰化学物质(EDC)。使用多种技术对制备的膜进行了表征,包括衰减全反射-傅立叶变换红外(ATR-FTIR)光谱、扫描电子显微镜、接触角分析和纯水流量测量。此外,还进行了动态吸附实验,以评估制备的膜对八种 EDC 的吸附机理。聚氨酯功能化膜具有亲水性(接触角为 52°),并在整个过滤过程中保持较高的渗透通量(26000 升/小时 m2 bar)。动态吸附结果表明,在膜上引入聚氨酯官能团可显著提高对 17β-雌二醇、雌三醇、双酚 A、雌酮、炔雌醇和马钱子苷的去除效率。功能化聚醚砜膜对 17β-estradiol 的吸附量为 6.7 ± 0.7 mg/m2,与未改性聚醚砜膜相比增加了 5 倍。这些膜成功地再生并重复使用了三个吸附周期,吸附能力没有任何下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Environmental Science & Engineering
Frontiers of Environmental Science & Engineering ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
10.90
自引率
12.50%
发文量
988
审稿时长
6.1 months
期刊介绍: Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines. FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信