{"title":"RIGID STABLE VECTOR BUNDLES ON HYPERKÄHLER VARIETIES OF TYPE","authors":"Kieran G. O’Grady","doi":"10.1017/s1474748023000452","DOIUrl":null,"url":null,"abstract":"We prove existence and unicity of slope-stable vector bundles on a general polarized hyperkähler (HK) variety of type <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000452_inline2.png\" /> <jats:tex-math> $K3^{[n]}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with certain discrete invariants, provided the rank and the first two Chern classes of the vector bundle satisfy certain equalities. The latter hypotheses at first glance appear to be quite restrictive, but, in fact, we might have listed almost all slope-stable rigid projectively hyperholomorphic vector bundles on polarized HK varieties of type <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000452_inline3.png\" /> <jats:tex-math> $K3^{[n]}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000452_inline4.png\" /> <jats:tex-math> $20$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> moduli.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"85 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748023000452","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove existence and unicity of slope-stable vector bundles on a general polarized hyperkähler (HK) variety of type $K3^{[n]}$ with certain discrete invariants, provided the rank and the first two Chern classes of the vector bundle satisfy certain equalities. The latter hypotheses at first glance appear to be quite restrictive, but, in fact, we might have listed almost all slope-stable rigid projectively hyperholomorphic vector bundles on polarized HK varieties of type $K3^{[n]}$ with $20$ moduli.
期刊介绍:
The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.