RIGID STABLE VECTOR BUNDLES ON HYPERKÄHLER VARIETIES OF TYPE

IF 1.1 2区 数学 Q1 MATHEMATICS
Kieran G. O’Grady
{"title":"RIGID STABLE VECTOR BUNDLES ON HYPERKÄHLER VARIETIES OF TYPE","authors":"Kieran G. O’Grady","doi":"10.1017/s1474748023000452","DOIUrl":null,"url":null,"abstract":"We prove existence and unicity of slope-stable vector bundles on a general polarized hyperkähler (HK) variety of type <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000452_inline2.png\" /> <jats:tex-math> $K3^{[n]}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with certain discrete invariants, provided the rank and the first two Chern classes of the vector bundle satisfy certain equalities. The latter hypotheses at first glance appear to be quite restrictive, but, in fact, we might have listed almost all slope-stable rigid projectively hyperholomorphic vector bundles on polarized HK varieties of type <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000452_inline3.png\" /> <jats:tex-math> $K3^{[n]}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000452_inline4.png\" /> <jats:tex-math> $20$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> moduli.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"85 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748023000452","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove existence and unicity of slope-stable vector bundles on a general polarized hyperkähler (HK) variety of type $K3^{[n]}$ with certain discrete invariants, provided the rank and the first two Chern classes of the vector bundle satisfy certain equalities. The latter hypotheses at first glance appear to be quite restrictive, but, in fact, we might have listed almost all slope-stable rigid projectively hyperholomorphic vector bundles on polarized HK varieties of type $K3^{[n]}$ with $20$ moduli.
型超卡勒变体上的刚性稳定向量束
我们证明了具有某些离散不变式的 $K3^{[n]}$ 型一般极化超凯勒(HK)变上斜坡稳定向量束的存在性和单一性,条件是向量束的秩和前两个车恩类满足某些相等性。后一种假设乍一看似乎限制性很大,但事实上,我们可能已经列出了几乎所有斜率稳定的刚性投影超同构向量束,它们都在模量为 20 美元的 $K3^{[n]}$ 型极化 HK varieties 上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信