Xu Ye , Yueyue Wu , Haoxuan Xun , Yuanyuan Li , Yan Zhang , Ping Wang , Yaohui Zhan
{"title":"Transparent, multifunctional and multiform ionic sensors prepared by one-step impregnation","authors":"Xu Ye , Yueyue Wu , Haoxuan Xun , Yuanyuan Li , Yan Zhang , Ping Wang , Yaohui Zhan","doi":"10.1016/j.mtnano.2023.100447","DOIUrl":null,"url":null,"abstract":"<div><p><span>Under current technology trends, wearable devices<span> with high levels of transparency and flexibility have become hotspots to improve aesthetics or enhance security for civilian and military applications. Simultaneously, the single sensor can no longer satisfy the various needs, like temperature and humidity, stress and strain and so on. However, it is still challenging that how to fabricate multifunctional transparent sensors nowadays. In this paper, the transparent polyurethane<span><span> (PU) film was easily prepared by impregnating the ionic liquid<span> (IL) into the pure PU film (PU@IL). And the effects of film thickness, ionic concentration and fiber morphology on transparency are investigated by experiments and simulations. On the basis of it, several sensors based on PU@IL film are further developed. The resistive sensor with PU@IL film shows different sensing abilities for stress, strain and temperature. Capacitive sensor based on </span></span>indium tin oxide (ITO)-PU@IL-ITO has a lower stress detection limit (0.51 kPa) and faster response/recovery time (136.8 ms/68.4 ms). This paper may provide a novel strategy to design and fabricate multifunctional and multiform sensors with good </span></span></span>mechanical properties, transparency and wide applications (preventing scalds, monitoring physiological activities).</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"25 ","pages":"Article 100447"},"PeriodicalIF":8.2000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842023001463","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Under current technology trends, wearable devices with high levels of transparency and flexibility have become hotspots to improve aesthetics or enhance security for civilian and military applications. Simultaneously, the single sensor can no longer satisfy the various needs, like temperature and humidity, stress and strain and so on. However, it is still challenging that how to fabricate multifunctional transparent sensors nowadays. In this paper, the transparent polyurethane (PU) film was easily prepared by impregnating the ionic liquid (IL) into the pure PU film (PU@IL). And the effects of film thickness, ionic concentration and fiber morphology on transparency are investigated by experiments and simulations. On the basis of it, several sensors based on PU@IL film are further developed. The resistive sensor with PU@IL film shows different sensing abilities for stress, strain and temperature. Capacitive sensor based on indium tin oxide (ITO)-PU@IL-ITO has a lower stress detection limit (0.51 kPa) and faster response/recovery time (136.8 ms/68.4 ms). This paper may provide a novel strategy to design and fabricate multifunctional and multiform sensors with good mechanical properties, transparency and wide applications (preventing scalds, monitoring physiological activities).
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites