Understanding the factors influencing cloud-core vertical accelerations during deep convection formation in the WRF model

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Na Li , Jin Wang , Lingkun Ran , Lei Yin , Xiba Tang , Yuchen Liu
{"title":"Understanding the factors influencing cloud-core vertical accelerations during deep convection formation in the WRF model","authors":"Na Li ,&nbsp;Jin Wang ,&nbsp;Lingkun Ran ,&nbsp;Lei Yin ,&nbsp;Xiba Tang ,&nbsp;Yuchen Liu","doi":"10.1016/j.aosl.2023.100448","DOIUrl":null,"url":null,"abstract":"<div><p>By introducing a linear diagnostic equation to compute perturbation pressure, the vertical momentum equation of the WRF model in the <em>η</em> coordinate is rederived, which constructs a direct relationship between vertical acceleration and physical factors we concern in the deep convection initiation (DCI) process. Important physical processes to the rapid growth of convective cloud are studied, aiming to fully understand the DCI process in the model. It is found that the DCI process is highly related to a cloud-core vertical acceleration. Due to this acceleration, the updraft is strengthened and the cloud is able to develop higher. Based on the diagnostic results of the vertical momentum equation, some different processes contributing to the high-level cloud-core accelerations in the model are found. A divergent pattern of the three-dimensional wind field is favorable for vertical acceleration. An inner physical process is that the horizontally convergent mass should be pumped up instantly by the vertical updraft to sustain a strong vertical acceleration. Second-order vertical inhomogeneity of perturbation geopotential also has an impact. Because of geopotential changes by vertical velocity (geopotential equation), this factor implies larger vertical motions will induce larger accelerations. The effects of the vertical gradient of perturbation potential temperature and moisture may be cancelled out since phase transitions can heat the convective air, but simultaneously decrease the water vapor content. Moisture makes a direct contribution to vertical acceleration, but is mostly cancelled out by the drag of cloud hydrometeors. Clearly understanding the direct impact of the basic prognostic variables on convection may help to identify the reason why DCI predictions within the model fail.</p><p>摘要</p><p>本文将扰动气压利用一个线性诊断关系代替, 重新推导了WRF模式框架地形追随坐标系下的垂直动量方程, 建立了垂直加速与对流触发 (DCI) 影响因子 (如温度, 水汽等) 的直接联系. 研究发现, DCI过程与对流核垂直加速相关, 三维副散, 扰动位势在垂直方向的二阶非均匀性, 扰动位温垂直梯度, 比湿及其垂直梯度, 水凝物拖曳, 均是能够直接影响垂直加速和对流触发的物理因子, 这些量与模式基本预报量相关, 通过解析基本预报量对对流发展的直接影响, 可能有助于理解模式对DCI过程预测失败的原因.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 3","pages":"Article 100448"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283423001472/pdfft?md5=457d7c97d8e3f0c8a14d66b0dee2ce4d&pid=1-s2.0-S1674283423001472-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283423001472","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

By introducing a linear diagnostic equation to compute perturbation pressure, the vertical momentum equation of the WRF model in the η coordinate is rederived, which constructs a direct relationship between vertical acceleration and physical factors we concern in the deep convection initiation (DCI) process. Important physical processes to the rapid growth of convective cloud are studied, aiming to fully understand the DCI process in the model. It is found that the DCI process is highly related to a cloud-core vertical acceleration. Due to this acceleration, the updraft is strengthened and the cloud is able to develop higher. Based on the diagnostic results of the vertical momentum equation, some different processes contributing to the high-level cloud-core accelerations in the model are found. A divergent pattern of the three-dimensional wind field is favorable for vertical acceleration. An inner physical process is that the horizontally convergent mass should be pumped up instantly by the vertical updraft to sustain a strong vertical acceleration. Second-order vertical inhomogeneity of perturbation geopotential also has an impact. Because of geopotential changes by vertical velocity (geopotential equation), this factor implies larger vertical motions will induce larger accelerations. The effects of the vertical gradient of perturbation potential temperature and moisture may be cancelled out since phase transitions can heat the convective air, but simultaneously decrease the water vapor content. Moisture makes a direct contribution to vertical acceleration, but is mostly cancelled out by the drag of cloud hydrometeors. Clearly understanding the direct impact of the basic prognostic variables on convection may help to identify the reason why DCI predictions within the model fail.

摘要

本文将扰动气压利用一个线性诊断关系代替, 重新推导了WRF模式框架地形追随坐标系下的垂直动量方程, 建立了垂直加速与对流触发 (DCI) 影响因子 (如温度, 水汽等) 的直接联系. 研究发现, DCI过程与对流核垂直加速相关, 三维副散, 扰动位势在垂直方向的二阶非均匀性, 扰动位温垂直梯度, 比湿及其垂直梯度, 水凝物拖曳, 均是能够直接影响垂直加速和对流触发的物理因子, 这些量与模式基本预报量相关, 通过解析基本预报量对对流发展的直接影响, 可能有助于理解模式对DCI过程预测失败的原因.

Abstract Image

了解影响 WRF 模式中深层对流形成过程中云核垂直加速度的因素
通过引入线性诊断方程来计算扰动压力,重新得出了 WRF 模式在 η 坐标上的垂直动量方程,从而构建了垂直加速度与深对流起始(DCI)过程中我们所关注的物理因素之间的直接关系。研究了对流云快速增长的重要物理过程,旨在充分理解模型中的 DCI 过程。研究发现,DCI 过程与云核垂直加速度高度相关。由于这种加速度,上升气流得到加强,云得以向更高处发展。根据垂直动量方程的诊断结果,发现了模型中导致高层云心加速的一些不同过程。三维风场的发散模式有利于垂直加速。一个内在的物理过程是,水平汇聚的质量应被垂直上升气流瞬间抽起,以维持强大的垂直加速度。扰动位势的二阶垂直不均匀性也有影响。由于位势随垂直速度的变化而变化(位势方程),这一因素意味着更大的垂直运动将引起更大的加速度。扰动位势温度和湿度垂直梯度的影响可能会被抵消,因为相变可以加热对流空气,但同时会降低水汽含量。水汽对垂直加速度有直接影响,但主要被云水气阻力抵消。清楚地了解基本预报变量对对流的直接影响,可能有助于找出模式内 DCI 预测失败的原因。摘要本文将扰动气压利用一个线性诊断关系代替, 重新推导了 wrf 模式框架地形追随坐标系下的垂直动量方程, 建立了垂直加速与对流触发 (dci) 影响因子 (如温度、水汽等) 的直接联系。研究发现, dci过程与对流核垂直加速相关, 三维副散, 扰动位势在垂直方向的二阶非均匀性, 扰动位温垂直梯度, 比湿及其垂直梯度, 水凝物拖曳, 均是能够直接影响垂直加速和对流触发的物理因子, 这些量与模式基本预报量相关, 通过解析基本预报量对对流发展的直接影响, 可能有助于理解模式对dci过程预测失败的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信