{"title":"Enhancing biogas generation from lignocellulosic biomass through biological pretreatment: Exploring the role of ruminant microbes and anaerobic fungi","authors":"R. Tamilselvan, A. Immanuel Selwynraj","doi":"10.1016/j.anaerobe.2023.102815","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Biogas<span> production from Lignocellulosic Biomass (LB) via anaerobic digestion (AD) has gained attention for its potential in self-sustainability. However, the recalcitrance of LB cell walls pose a challenge to its degradability and biogas generation. Therefore, pretreatment of LB is necessary to enhance lignin removal and increase degradability. Among the different approaches, environmentally friendly biological pretreatment ispromising as it avoids the production of inhibitors.</span></p></div><div><h3>Methods</h3><p><span><span><span>The ruminal microbial community, including anaerobic fungi, bacteria, and </span>protozoa, has shown an ability to effectively degrade LB through biomechanical and microbial penetration of refractory cell structures. In this review, we provide an overview of ruminant microbes dominating LB's AD, their degradation mechanism, and the </span>bioaugmentation of the </span>rumen. We also explore the potential cultivation of anaerobic fungi from the rumen, their enzyme potential, and their role in AD.</p></div><div><h3>Results</h3><p>The rumen ecosystem, comprising both bacteria and fungi, plays a crucial role in enhancing AD. This comprehensive review delves into the intricacies of ruminant microorganisms' adhesion to plant cells, elucidates degradation mechanisms, and explores integrated pretreatment approaches for the effective utilization of LB, minimizing the impact of inhibitors. The discussion underscores the considerable potential of ruminant microbes in pretreating LB, paving the way for sustainable biogas production.</p></div><div><h3>Conclusions</h3><p><span>Optimizing fungal colonization and ligninolytic enzyme production, such as </span>manganese peroxidase<span><span> and laccase, significantly enhances the efficiency of fungal pretreatment. Integrating anaerobic fungi through bioaugmentation during mainstream processing demonstrably increases methane production. This study opens promising avenues for further research and development of these microorganisms for </span>bioenergy production.</span></p></div>","PeriodicalId":8050,"journal":{"name":"Anaerobe","volume":"85 ","pages":"Article 102815"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anaerobe","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1075996423001282","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Biogas production from Lignocellulosic Biomass (LB) via anaerobic digestion (AD) has gained attention for its potential in self-sustainability. However, the recalcitrance of LB cell walls pose a challenge to its degradability and biogas generation. Therefore, pretreatment of LB is necessary to enhance lignin removal and increase degradability. Among the different approaches, environmentally friendly biological pretreatment ispromising as it avoids the production of inhibitors.
Methods
The ruminal microbial community, including anaerobic fungi, bacteria, and protozoa, has shown an ability to effectively degrade LB through biomechanical and microbial penetration of refractory cell structures. In this review, we provide an overview of ruminant microbes dominating LB's AD, their degradation mechanism, and the bioaugmentation of the rumen. We also explore the potential cultivation of anaerobic fungi from the rumen, their enzyme potential, and their role in AD.
Results
The rumen ecosystem, comprising both bacteria and fungi, plays a crucial role in enhancing AD. This comprehensive review delves into the intricacies of ruminant microorganisms' adhesion to plant cells, elucidates degradation mechanisms, and explores integrated pretreatment approaches for the effective utilization of LB, minimizing the impact of inhibitors. The discussion underscores the considerable potential of ruminant microbes in pretreating LB, paving the way for sustainable biogas production.
Conclusions
Optimizing fungal colonization and ligninolytic enzyme production, such as manganese peroxidase and laccase, significantly enhances the efficiency of fungal pretreatment. Integrating anaerobic fungi through bioaugmentation during mainstream processing demonstrably increases methane production. This study opens promising avenues for further research and development of these microorganisms for bioenergy production.
期刊介绍:
Anaerobe is essential reading for those who wish to remain at the forefront of discoveries relating to life processes of strictly anaerobes. The journal is multi-disciplinary, and provides a unique forum for those investigating anaerobic organisms that cause infections in humans and animals, as well as anaerobes that play roles in microbiomes or environmental processes.
Anaerobe publishes reviews, mini reviews, original research articles, notes and case reports. Relevant topics fall into the broad categories of anaerobes in human and animal diseases, anaerobes in the microbiome, anaerobes in the environment, diagnosis of anaerobes in clinical microbiology laboratories, molecular biology, genetics, pathogenesis, toxins and antibiotic susceptibility of anaerobic bacteria.