Hao Jiang, Xu Wu, Heng Zhang, Qiong Yan, Hui Li, Tianyi Ma, Song Yang
{"title":"Toward effective electrocatalytic C–N coupling for the synthesis of organic nitrogenous compounds using CO2 and biomass as carbon sources","authors":"Hao Jiang, Xu Wu, Heng Zhang, Qiong Yan, Hui Li, Tianyi Ma, Song Yang","doi":"10.1002/sus2.175","DOIUrl":null,"url":null,"abstract":"Thermochemical conversion of fossil resources into fuels, chemicals, and materials has rapidly increased atmospheric CO2 levels, hindering global efforts toward achieving carbon neutrality. With the increasing push for sustainability, utilizing electrochemical technology to transform CO2 or biomass into value‐added chemicals and to close the carbon cycle with sustainable energy sources represents a promising strategy. Expanding the scope of electrosynthesis technology is a prerequisite for the electrification of chemical manufacturing. To this end, constructing the C─N bond is considered a priority. However, a systematic review of electrocatalytic processes toward building C─N bonds using CO2 and biomass as carbon sources is not available. Accordingly, this review highlights the research progress in the electrosynthesis of organic nitrogen compounds from CO2 and biomass by C─N coupling reactions in view of catalytic materials, focusing on the enlightenment of traditional catalysis on C─N coupling and the understanding of the basis of electrochemical C─N coupling. The possibility of C─N bond in electrocatalysis is also examined from the standpoints of activation of substrates, coupling site, mechanism, and inhibition of hydrogen evolution reaction (HER). Finally, the challenges and prospects of electrocatalytic C─N coupling reactions with improved efficiency and selectivity for future development are discussed.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":"37 24","pages":"781 - 820"},"PeriodicalIF":18.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.175","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Thermochemical conversion of fossil resources into fuels, chemicals, and materials has rapidly increased atmospheric CO2 levels, hindering global efforts toward achieving carbon neutrality. With the increasing push for sustainability, utilizing electrochemical technology to transform CO2 or biomass into value‐added chemicals and to close the carbon cycle with sustainable energy sources represents a promising strategy. Expanding the scope of electrosynthesis technology is a prerequisite for the electrification of chemical manufacturing. To this end, constructing the C─N bond is considered a priority. However, a systematic review of electrocatalytic processes toward building C─N bonds using CO2 and biomass as carbon sources is not available. Accordingly, this review highlights the research progress in the electrosynthesis of organic nitrogen compounds from CO2 and biomass by C─N coupling reactions in view of catalytic materials, focusing on the enlightenment of traditional catalysis on C─N coupling and the understanding of the basis of electrochemical C─N coupling. The possibility of C─N bond in electrocatalysis is also examined from the standpoints of activation of substrates, coupling site, mechanism, and inhibition of hydrogen evolution reaction (HER). Finally, the challenges and prospects of electrocatalytic C─N coupling reactions with improved efficiency and selectivity for future development are discussed.
期刊介绍:
SusMat aims to publish interdisciplinary and balanced research on sustainable development in various areas including materials science, engineering, chemistry, physics, and ecology. The journal focuses on sustainable materials and their impact on energy and the environment. The topics covered include environment-friendly materials, green catalysis, clean energy, and waste treatment and management. The readership includes materials scientists, engineers, chemists, physicists, energy and environment researchers, and policy makers. The journal is indexed in CAS, Current Contents, DOAJ, Science Citation Index Expanded, and Web of Science. The journal highly values innovative multidisciplinary research with wide impact.