Learning Adequate Alignment and Interaction for Cross-Modal Retrieval

Q1 Computer Science
MingKang Wang , Min Meng , Jigang Liu , Jigang Wu
{"title":"Learning Adequate Alignment and Interaction for Cross-Modal Retrieval","authors":"MingKang Wang ,&nbsp;Min Meng ,&nbsp;Jigang Liu ,&nbsp;Jigang Wu","doi":"10.1016/j.vrih.2023.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>Cross-modal retrieval has attracted widespread attention in many cross-media similarity search applications, especially image-text retrieval in the fields of computer vision and natural language processing. Recently, visual and semantic embedding (VSE) learning has shown promising improvements on image-text retrieval tasks. Most existing VSE models employ two unrelated encoders to extract features, then use complex methods to contextualize and aggregate those features into holistic embeddings. Despite recent advances, existing approaches still suffer from two limitations: 1) without considering intermediate interaction and adequate alignment between different modalities, these models cannot guarantee the discriminative ability of representations; 2) existing feature aggregators are susceptible to certain noisy regions, which may lead to unreasonable pooling coefficients and affect the quality of the final aggregated features. To address these challenges, we propose a novel cross-modal retrieval model containing a well-designed alignment module and a novel multimodal fusion encoder, which aims to learn adequate alignment and interaction on aggregated features for effectively bridging the modality gap. Experiments on Microsoft COCO and Flickr30k datasets demonstrates the superiority of our model over the state-of-the-art methods.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"5 6","pages":"Pages 509-522"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209657962300027X/pdf?md5=12c947f69173683c04a27c84c4b305fc&pid=1-s2.0-S209657962300027X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209657962300027X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-modal retrieval has attracted widespread attention in many cross-media similarity search applications, especially image-text retrieval in the fields of computer vision and natural language processing. Recently, visual and semantic embedding (VSE) learning has shown promising improvements on image-text retrieval tasks. Most existing VSE models employ two unrelated encoders to extract features, then use complex methods to contextualize and aggregate those features into holistic embeddings. Despite recent advances, existing approaches still suffer from two limitations: 1) without considering intermediate interaction and adequate alignment between different modalities, these models cannot guarantee the discriminative ability of representations; 2) existing feature aggregators are susceptible to certain noisy regions, which may lead to unreasonable pooling coefficients and affect the quality of the final aggregated features. To address these challenges, we propose a novel cross-modal retrieval model containing a well-designed alignment module and a novel multimodal fusion encoder, which aims to learn adequate alignment and interaction on aggregated features for effectively bridging the modality gap. Experiments on Microsoft COCO and Flickr30k datasets demonstrates the superiority of our model over the state-of-the-art methods.

为跨模态检索学习适当的对齐和交互方式
跨模态检索在许多跨媒体相似性搜索应用中引起了广泛关注,尤其是计算机视觉和自然语言处理领域的图像-文本检索。最近,视觉和语义嵌入(VSE)学习在图像-文本检索任务中显示出良好的改进前景。现有的视觉和语义嵌入模型大多采用两个互不相关的编码器来提取特征,然后使用复杂的方法将这些特征上下文化并聚合成整体嵌入。尽管最近取得了一些进展,但现有方法仍存在两个局限性:1)如果不考虑不同模态之间的中间交互和充分对齐,这些模型无法保证表征的分辨能力;2)现有的特征聚合器容易受到某些噪声区域的影响,这可能导致不合理的集合系数,影响最终聚合特征的质量。为了应对这些挑战,我们提出了一种新型跨模态检索模型,该模型包含一个精心设计的对齐模块和一个新型多模态融合编码器,旨在对聚合特征进行充分的对齐和交互学习,从而有效弥合模态差距。在微软 COCO 和 Flickr30k 数据集上的实验表明,我们的模型优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信