Yuxuan Ma , Dan He , Quansheng Liu , Shukun Le , Xiaojing Wang
{"title":"A S-type 2D/2D heterojunction via intercalating ultrathin g-C3N4 into NH4V4O10 nanosheets and the boosted removal of ciprofloxacin","authors":"Yuxuan Ma , Dan He , Quansheng Liu , Shukun Le , Xiaojing Wang","doi":"10.1016/j.apcatb.2023.123642","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring cheap, eco-friendliness, and highly efficiency photocatalysts for improving the degradation performance of ciprofloxacin (CIP) is a challenge in the environmental remediation field. Herein, 2D/2D ultrathin g-C<sub>3</sub>N<sub>4</sub>/NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> (CNNS/NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub>) heterojunction is successfully prepared by intercalating g-C<sub>3</sub>N<sub>4</sub> nanosheets into the ultrathin NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub><span> nanobelts. For the optimized 50-CNNS/NH</span><sub>4</sub>V<sub>4</sub>O<sub>10</sub>, the removal rate is 92% for 10 mg·L<sup>−1</sup><span> CIP under simulated solar light, far better than the separated components CNNS and NH</span><sub>4</sub>V<sub>4</sub>O<sub>10</sub>. Moreover, the wide degraded concentration of CIP ranges from 5 to 40 mg·L<sup>−1</sup> devotes a prospect of practical application. The mechanism investigation confirms the intercalating action can break the interlaminar bonding linkage of NH<sub>4</sub>, which increases the surface NH<sub>4</sub><sup>+</sup> content and promotes the steered adsorption capacity toward ciprofloxacin through binding to F<sup>-</sup><span> in CIP via H-bonding. This work provides a novel design idea for constructing 2D/2D intercalated nanocomposite<span> for the application in the removal of the deleterious fluoric-containing organic pollutants in water environment.</span></span></p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337323012857","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring cheap, eco-friendliness, and highly efficiency photocatalysts for improving the degradation performance of ciprofloxacin (CIP) is a challenge in the environmental remediation field. Herein, 2D/2D ultrathin g-C3N4/NH4V4O10 (CNNS/NH4V4O10) heterojunction is successfully prepared by intercalating g-C3N4 nanosheets into the ultrathin NH4V4O10 nanobelts. For the optimized 50-CNNS/NH4V4O10, the removal rate is 92% for 10 mg·L−1 CIP under simulated solar light, far better than the separated components CNNS and NH4V4O10. Moreover, the wide degraded concentration of CIP ranges from 5 to 40 mg·L−1 devotes a prospect of practical application. The mechanism investigation confirms the intercalating action can break the interlaminar bonding linkage of NH4, which increases the surface NH4+ content and promotes the steered adsorption capacity toward ciprofloxacin through binding to F- in CIP via H-bonding. This work provides a novel design idea for constructing 2D/2D intercalated nanocomposite for the application in the removal of the deleterious fluoric-containing organic pollutants in water environment.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.