Addressing common sources of bias in studies of new-onset type 2 diabetes following COVID that use electronic health record data

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jessica L Harding , Emily Pfaff , Edward Boyko , Pandora L. Wander
{"title":"Addressing common sources of bias in studies of new-onset type 2 diabetes following COVID that use electronic health record data","authors":"Jessica L Harding ,&nbsp;Emily Pfaff ,&nbsp;Edward Boyko ,&nbsp;Pandora L. Wander","doi":"10.1016/j.deman.2023.100193","DOIUrl":null,"url":null,"abstract":"<div><p>Observational studies based on cohorts built from electronic health records (EHR) form the backbone of our current understanding of the risk of new-onset diabetes following COVID. EHR-based research is a powerful tool for medical research but is subject to multiple sources of bias. In this viewpoint, we define key sources of bias that threaten the validity of EHR-based research on this topic (namely misclassification, selection, surveillance, immortal time, and confounding biases), describe their implications, and suggest best practices to avoid them in the context of COVID-diabetes research.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666970623000720/pdfft?md5=3aa04e16907441ea14ae3ca507e9c8b2&pid=1-s2.0-S2666970623000720-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666970623000720","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Observational studies based on cohorts built from electronic health records (EHR) form the backbone of our current understanding of the risk of new-onset diabetes following COVID. EHR-based research is a powerful tool for medical research but is subject to multiple sources of bias. In this viewpoint, we define key sources of bias that threaten the validity of EHR-based research on this topic (namely misclassification, selection, surveillance, immortal time, and confounding biases), describe their implications, and suggest best practices to avoid them in the context of COVID-diabetes research.

利用电子健康记录数据解决 COVID 之后新发 2 型糖尿病研究中常见的偏差来源问题
基于电子健康记录(EHR)建立的队列进行的观察性研究是我们目前了解 COVID 后新发糖尿病风险的基础。基于电子病历的研究是医学研究的有力工具,但也受到多种偏倚来源的影响。在这一观点中,我们定义了威胁基于电子病历的相关研究有效性的主要偏倚来源(即误分类、选择、监测、不朽时间和混杂偏倚),描述了它们的影响,并提出了在 COVID-糖尿病研究中避免这些偏倚的最佳实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信