Davin Lee , Hae Chan Jeong , Seung Yeol Kim , Jin Yong Chung , Seok Hwan Cho , Kyoung Ah Kim , Jae Ho Cho , Byung Su Ko , In Jun Cha , Chang Geon Chung , Eun Seon Kim , Sung Bae Lee
{"title":"A comparison study of pathological features and drug efficacy between Drosophila models of C9orf72 ALS/FTD","authors":"Davin Lee , Hae Chan Jeong , Seung Yeol Kim , Jin Yong Chung , Seok Hwan Cho , Kyoung Ah Kim , Jae Ho Cho , Byung Su Ko , In Jun Cha , Chang Geon Chung , Eun Seon Kim , Sung Bae Lee","doi":"10.1016/j.mocell.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Amyotrophic lateral sclerosis is a devastating neurodegenerative disease with a complex genetic basis, presenting both in familial and sporadic forms. The hexanucleotide (G<sub>4</sub>C<sub>2</sub>) repeat expansion in the <em>C9orf72</em> gene, which triggers distinct pathogenic mechanisms, has been identified as a major contributor to familial and sporadic Amyotrophic lateral sclerosis cases. Animal models have proven pivotal in understanding these mechanisms; however, discrepancies between models due to variable transgene sequence, expression levels, and toxicity profiles complicate the translation of findings. Herein, we provide a systematic comparison of 7 publicly available <em>Drosophila</em> transgenes modeling the G<sub>4</sub>C<sub>2</sub> expansion under uniform conditions, evaluating variations in their toxicity profiles. Further, we tested 3 previously characterized disease-modifying drugs in selected lines to uncover discrepancies among the tested strains. Our study not only deepens our understanding of the <em>C9orf72</em> G<sub>4</sub>C<sub>2</sub> mutations but also presents a framework for comparing constructs with minute structural differences. This work may be used to inform experimental designs to better model disease mechanisms and help guide the development of targeted interventions for neurodegenerative diseases, thus bridging the gap between model-based research and therapeutic application.</p></div>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1016847823252553/pdfft?md5=e4596f25be7da1494d88758f2706ac9b&pid=1-s2.0-S1016847823252553-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules and Cells","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1016847823252553","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease with a complex genetic basis, presenting both in familial and sporadic forms. The hexanucleotide (G4C2) repeat expansion in the C9orf72 gene, which triggers distinct pathogenic mechanisms, has been identified as a major contributor to familial and sporadic Amyotrophic lateral sclerosis cases. Animal models have proven pivotal in understanding these mechanisms; however, discrepancies between models due to variable transgene sequence, expression levels, and toxicity profiles complicate the translation of findings. Herein, we provide a systematic comparison of 7 publicly available Drosophila transgenes modeling the G4C2 expansion under uniform conditions, evaluating variations in their toxicity profiles. Further, we tested 3 previously characterized disease-modifying drugs in selected lines to uncover discrepancies among the tested strains. Our study not only deepens our understanding of the C9orf72 G4C2 mutations but also presents a framework for comparing constructs with minute structural differences. This work may be used to inform experimental designs to better model disease mechanisms and help guide the development of targeted interventions for neurodegenerative diseases, thus bridging the gap between model-based research and therapeutic application.
期刊介绍:
Molecules and Cells is an international on-line open-access journal devoted to the advancement and dissemination of fundamental knowledge in molecular and cellular biology. It was launched in 1990 and ISO abbreviation is ''Mol. Cells''. Reports on a broad range of topics of general interest to molecular and cell biologists are published. It is published on the last day of each month by the Korean Society for Molecular and Cellular Biology.