Multi-scale feature fusion convolutional neural network for surface damage detection in retired steel shafts

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Weiwei Liu, Jiahe Qiu, YuJiang Wang, Tao Li, Shujie Liu, Guangda Hu, Lin Xue
{"title":"Multi-scale feature fusion convolutional neural network for surface damage detection in retired steel shafts","authors":"Weiwei Liu, Jiahe Qiu, YuJiang Wang, Tao Li, Shujie Liu, Guangda Hu, Lin Xue","doi":"10.1115/1.4064257","DOIUrl":null,"url":null,"abstract":"\n The detection of surface damage is an important part of the process before remanufacturing retired steel shaft (RSS). Traditional damage detection is mainly done manually, which is time-consuming and error-prone. In recent years, computer vision methods have been introduced into the community of surface damage detection. However, some advanced typical object detection methods perform poorly in the detection of surface damage on RSS due to the complex surface background and rich diversity of damage patterns and scales. To address these issues, we propose a Faster-RCNN-based surface damage detection method for RSS. To improve the adaptability of the network, we endow it with a feature pyramid network (FPN) as well as adaptable multi-scale information modifications to the region proposal network (RPN). In this paper, a detailed study of an FPN-based feature extraction network and the multi-scale object detection network is conducted. Experimental results show that our method improves the mAP score by 8.9% compared with the original Faster-RCNN for surface damage detection of RSS, and the average detection accuracy for small objects is improved by 18.2%. Compared with the current advanced object detection methods, our method is more advantageous for the detection of multi-scale objects.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064257","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of surface damage is an important part of the process before remanufacturing retired steel shaft (RSS). Traditional damage detection is mainly done manually, which is time-consuming and error-prone. In recent years, computer vision methods have been introduced into the community of surface damage detection. However, some advanced typical object detection methods perform poorly in the detection of surface damage on RSS due to the complex surface background and rich diversity of damage patterns and scales. To address these issues, we propose a Faster-RCNN-based surface damage detection method for RSS. To improve the adaptability of the network, we endow it with a feature pyramid network (FPN) as well as adaptable multi-scale information modifications to the region proposal network (RPN). In this paper, a detailed study of an FPN-based feature extraction network and the multi-scale object detection network is conducted. Experimental results show that our method improves the mAP score by 8.9% compared with the original Faster-RCNN for surface damage detection of RSS, and the average detection accuracy for small objects is improved by 18.2%. Compared with the current advanced object detection methods, our method is more advantageous for the detection of multi-scale objects.
用于退役钢轴表面损伤检测的多尺度特征融合卷积神经网络
表面损伤检测是退役钢轴(RSS)再制造前的一个重要环节。传统的损伤检测主要由人工完成,既费时又容易出错。近年来,计算机视觉方法被引入表面损伤检测领域。然而,由于表面背景复杂,损伤模式和尺度丰富多样,一些先进的典型物体检测方法在检测 RSS 表面损伤时表现不佳。针对这些问题,我们提出了一种基于 Faster-RCNN 的 RSS 表面损伤检测方法。为了提高该网络的适应性,我们赋予它一个特征金字塔网络(FPN),并对区域建议网络(RPN)进行了可适应的多尺度信息修改。本文对基于 FPN 的特征提取网络和多尺度物体检测网络进行了详细研究。实验结果表明,与原始的 Faster-RCNN 相比,我们的方法在 RSS 表面损伤检测方面的 mAP 分数提高了 8.9%,小物体的平均检测精度提高了 18.2%。与目前先进的物体检测方法相比,我们的方法在多尺度物体检测方面更具优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
12.90%
发文量
100
审稿时长
6 months
期刊介绍: The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications. Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信