Splitting type results for pseudoconvex domains and remarks on their Nebenhülle

IF 1 3区 数学 Q1 MATHEMATICS
Arkadiusz Lewandowski
{"title":"Splitting type results for pseudoconvex domains and remarks on their Nebenhülle","authors":"Arkadiusz Lewandowski","doi":"10.1007/s10231-023-01406-y","DOIUrl":null,"url":null,"abstract":"<div><p>We give a very general splitting type theorem for biholomorphic maps close to identity in the context of smoothly bounded pseudoconvex domains (Theorem 1.4). As a particular case, in the context of worm domains, we essentially reprove the splitting type result (Theorem 1.3) from Bracci et al. (Math Z 292:879–893, 2019) (by a different method). We also discuss some properties of the Nebenhülle of worm domains.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01406-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01406-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a very general splitting type theorem for biholomorphic maps close to identity in the context of smoothly bounded pseudoconvex domains (Theorem 1.4). As a particular case, in the context of worm domains, we essentially reprove the splitting type result (Theorem 1.3) from Bracci et al. (Math Z 292:879–893, 2019) (by a different method). We also discuss some properties of the Nebenhülle of worm domains.

伪凸域的分裂类型结果及其 Nebenhülle 评论
在平滑有界伪凸域的背景下,我们给出了接近同一性的双全形映射的一般分裂类型定理(定理 1.4)。作为一种特殊情况,在蠕虫域的背景下,我们基本上重现了 Bracci 等人(Math Z 292:879-893, 2019)的分裂类型结果(定理 1.3)(方法不同)。我们还讨论了虫域的内本许勒的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信