{"title":"Vanadium complexes: potential candidates for therapeutic applications","authors":"Anand Pratap Singh, Sutapa Roy, Ishwar Chandra Maurya","doi":"10.1007/s11243-023-00565-4","DOIUrl":null,"url":null,"abstract":"<div><p>Transition metal with variable oxidation states has always been a point of attraction since many decades for scientists with special focus in the field of catalysis, biologically active agents, therapeutic drugs, etc. Among these, vanadium is a metal which is of multi-dimensional potential for industry, pharmaceutics, physiology, etc. Albeit the fact that inorganic vanadium salts like Na<sub>2</sub>VO<sub>3</sub> and VOSO<sub>4</sub> have shown considerable medical potential, yet their low absorbance, higher toxicity and excretion through feces and urine drifted the attention of scientist to synthesize novel vanadium compounds/organic polyoxovanadate (POV) having versatile therapeutic potential, better absorbance and specific intra-/intercellular biomolecular interaction with various cell signaling pathways, resulting in better therapeutic activities. In past few decades, this area of research has gained much attention but still need to be done a lot in future. Keeping in mind the therapeutic scope of various vanadium complexes, the present review article is written with the purpose of providing comprehensive overview to those who are interested to dive and explore the possibility for the synthesis of new vanadium complexes as drug with its therapeutic properties. Our study aims at reporting the biphasic behavior of vanadium, a range of vanadium compound with special focus on its anti-diabetic, anti-bacterial, anti-viral, cardiovascular, anticancer, anti-oxidant, alkaline phosphatase (ALP) inhibitor properties and their probable mechanism cited in recent leading literature databases. Analogy of vanadate with phosphate responsible for its interaction with various phosphatase enzymes like ALP, protein tyrosine phosphatase (PTP), etc. in the mechanistic point of view is analyzed. The multi-directional study carried out so far on vanadium complexes and its mechanistic interaction at biomolecular level need to be systematically summarized for further innovation in drug discovery and to make new avenues in the synthetic metallodrug fields to fight against some lethal diseases.</p></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"49 2","pages":"101 - 119"},"PeriodicalIF":1.6000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-023-00565-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal with variable oxidation states has always been a point of attraction since many decades for scientists with special focus in the field of catalysis, biologically active agents, therapeutic drugs, etc. Among these, vanadium is a metal which is of multi-dimensional potential for industry, pharmaceutics, physiology, etc. Albeit the fact that inorganic vanadium salts like Na2VO3 and VOSO4 have shown considerable medical potential, yet their low absorbance, higher toxicity and excretion through feces and urine drifted the attention of scientist to synthesize novel vanadium compounds/organic polyoxovanadate (POV) having versatile therapeutic potential, better absorbance and specific intra-/intercellular biomolecular interaction with various cell signaling pathways, resulting in better therapeutic activities. In past few decades, this area of research has gained much attention but still need to be done a lot in future. Keeping in mind the therapeutic scope of various vanadium complexes, the present review article is written with the purpose of providing comprehensive overview to those who are interested to dive and explore the possibility for the synthesis of new vanadium complexes as drug with its therapeutic properties. Our study aims at reporting the biphasic behavior of vanadium, a range of vanadium compound with special focus on its anti-diabetic, anti-bacterial, anti-viral, cardiovascular, anticancer, anti-oxidant, alkaline phosphatase (ALP) inhibitor properties and their probable mechanism cited in recent leading literature databases. Analogy of vanadate with phosphate responsible for its interaction with various phosphatase enzymes like ALP, protein tyrosine phosphatase (PTP), etc. in the mechanistic point of view is analyzed. The multi-directional study carried out so far on vanadium complexes and its mechanistic interaction at biomolecular level need to be systematically summarized for further innovation in drug discovery and to make new avenues in the synthetic metallodrug fields to fight against some lethal diseases.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.