{"title":"Development of Activated Carbon Textiles Produced from Jute and Cotton Wastes for Electromagnetic Shielding Applications","authors":"Sema Sert, Deniz Duran Kaya, Ayşegül Körlü","doi":"10.3390/fib11120110","DOIUrl":null,"url":null,"abstract":"Increasing amounts of waste resulting from over-consumption carry substantial risks for human and environmental health, and disposing of this waste requires enormous amounts of energy. As a result, waste-to-wealth and circular economy approaches have gained attention in both academia and the commercial sector in recent years. Accordingly, this study aims to develop electromagnetic shielding materials by converting non-conductive waste textiles into conductive value-added product and porous fabrics by carbonizing the structure itself rather than by adding any conductive particles. To this end, the novel contribution of the present study is that waste textiles were converted into activated carbon in a shorter time and without compromising the integrity of the fibrous network via microwave pyrolysis without inert gas. Sulfuric acid was used as a dehydration and activation agent, suppressing the release of volatile organic substances and eliminating greenhouse gas emissions. This approach also increased product yield and reduced energy consumption and sample shrinkage. The structures of the activated carbon textile showed EMI shielding within 20–30 dB (99.9% attenuation) in the 1–6 GHz frequency range. The maximum SSE/t value of 950.71 dB·cm2·g−1 was obtained with the microwave post-treated activated carbon textile. Micropores were dominant characteristics of these materials, and pore diameters increased with increased acid concentration. The maximum surface area of 383.92 m2/g was obtained with 8% acid. Ultrasound treatment reduced water-energy consumption and cost. Only 5 min of microwave post-treatment increased textile conductivity and thermal stability and contributed positively to electromagnetic shielding.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":"87 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11120110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing amounts of waste resulting from over-consumption carry substantial risks for human and environmental health, and disposing of this waste requires enormous amounts of energy. As a result, waste-to-wealth and circular economy approaches have gained attention in both academia and the commercial sector in recent years. Accordingly, this study aims to develop electromagnetic shielding materials by converting non-conductive waste textiles into conductive value-added product and porous fabrics by carbonizing the structure itself rather than by adding any conductive particles. To this end, the novel contribution of the present study is that waste textiles were converted into activated carbon in a shorter time and without compromising the integrity of the fibrous network via microwave pyrolysis without inert gas. Sulfuric acid was used as a dehydration and activation agent, suppressing the release of volatile organic substances and eliminating greenhouse gas emissions. This approach also increased product yield and reduced energy consumption and sample shrinkage. The structures of the activated carbon textile showed EMI shielding within 20–30 dB (99.9% attenuation) in the 1–6 GHz frequency range. The maximum SSE/t value of 950.71 dB·cm2·g−1 was obtained with the microwave post-treated activated carbon textile. Micropores were dominant characteristics of these materials, and pore diameters increased with increased acid concentration. The maximum surface area of 383.92 m2/g was obtained with 8% acid. Ultrasound treatment reduced water-energy consumption and cost. Only 5 min of microwave post-treatment increased textile conductivity and thermal stability and contributed positively to electromagnetic shielding.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins