In silico antibacterial, anticancer, antioxidant, antidiabetic activity predictions of the dual organic peroxide 2,5-dimethyl-2,5-di(tert-butyl peroxyl)hexane
{"title":"In silico antibacterial, anticancer, antioxidant, antidiabetic activity predictions of the dual organic peroxide 2,5-dimethyl-2,5-di(tert-butyl peroxyl)hexane","authors":"M. Abd El-Wahab, M.G. El-Desouky","doi":"10.3233/mgc-230095","DOIUrl":null,"url":null,"abstract":"In this search organic peroxide has been studied for its potential biological activities in various fields, including medicine and biotechnology. Molecular docking studies have been conducted to predict the binding between organic peroxide and certain biological targets, such as the breast cancer receptor 3hb5-oxidoreductase and the prostate cancer mutant 2q7k-Hormone. The docking results indicate potential interactions between peroxide and these targets. In addition to its potential cytotoxic activity, organic peroxide has been investigated for its antidiabetic activity. The docking results suggest that peroxide binds to the active site of enzymes involved in diabetes, such as α-amylase, pancreatic lipase, and β-glucosidase, with low binding energies. This indicates a potential role for peroxide in the treatment of diabetes. Furthermore, the interaction between peroxide and the antioxidant protein IHD2 (2HCK) has been explored. These computational studies suggest a possible pharmacological role for peroxide in the treatment of Helicobacter pylori (H. pylori) infection. The docking energy between peroxide and Helicobacter pylori adhesin HopQ type I bound to the N-terminal domain of human CEACAM1 indicates that peroxide could be a potential target to inhibit H. pylori infection. It’s important to note that these findings are based on computational methods and molecular docking studies. Further research, including in vitro and in vivo experiments, would be necessary to validate these findings and fully understand the potential benefits and limitations of peroxide in these applications.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-230095","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this search organic peroxide has been studied for its potential biological activities in various fields, including medicine and biotechnology. Molecular docking studies have been conducted to predict the binding between organic peroxide and certain biological targets, such as the breast cancer receptor 3hb5-oxidoreductase and the prostate cancer mutant 2q7k-Hormone. The docking results indicate potential interactions between peroxide and these targets. In addition to its potential cytotoxic activity, organic peroxide has been investigated for its antidiabetic activity. The docking results suggest that peroxide binds to the active site of enzymes involved in diabetes, such as α-amylase, pancreatic lipase, and β-glucosidase, with low binding energies. This indicates a potential role for peroxide in the treatment of diabetes. Furthermore, the interaction between peroxide and the antioxidant protein IHD2 (2HCK) has been explored. These computational studies suggest a possible pharmacological role for peroxide in the treatment of Helicobacter pylori (H. pylori) infection. The docking energy between peroxide and Helicobacter pylori adhesin HopQ type I bound to the N-terminal domain of human CEACAM1 indicates that peroxide could be a potential target to inhibit H. pylori infection. It’s important to note that these findings are based on computational methods and molecular docking studies. Further research, including in vitro and in vivo experiments, would be necessary to validate these findings and fully understand the potential benefits and limitations of peroxide in these applications.
期刊介绍:
Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.