Scale-preserving shape reconstruction from monocular endoscope image sequences by supervised depth learning

IF 2.8 Q3 ENGINEERING, BIOMEDICAL
Takeshi Masuda, Ryusuke Sagawa, Ryo Furukawa, Hiroshi Kawasaki
{"title":"Scale-preserving shape reconstruction from monocular endoscope image sequences by supervised depth learning","authors":"Takeshi Masuda,&nbsp;Ryusuke Sagawa,&nbsp;Ryo Furukawa,&nbsp;Hiroshi Kawasaki","doi":"10.1049/htl2.12064","DOIUrl":null,"url":null,"abstract":"<p>Reconstructing 3D shapes from images are becoming popular, but such methods usually estimate relative depth maps with ambiguous scales. A method for reconstructing a scale-preserving 3D shape from monocular endoscope image sequences through training an absolute depth prediction network is proposed. First, a dataset of synchronized sequences of RGB images and depth maps is created using an endoscope simulator. Then, a supervised depth prediction network is trained that estimates a depth map from a RGB image minimizing the loss compared to the ground-truth depth map. The predicted depth map sequence is aligned to reconstruct a 3D shape. Finally, the proposed method is applied to a real endoscope image sequence.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"11 2-3","pages":"76-84"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.12064","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reconstructing 3D shapes from images are becoming popular, but such methods usually estimate relative depth maps with ambiguous scales. A method for reconstructing a scale-preserving 3D shape from monocular endoscope image sequences through training an absolute depth prediction network is proposed. First, a dataset of synchronized sequences of RGB images and depth maps is created using an endoscope simulator. Then, a supervised depth prediction network is trained that estimates a depth map from a RGB image minimizing the loss compared to the ground-truth depth map. The predicted depth map sequence is aligned to reconstruct a 3D shape. Finally, the proposed method is applied to a real endoscope image sequence.

Abstract Image

通过有监督深度学习从单目内窥镜图像序列中重建保尺度形状
从图像中重建三维形状的方法正变得越来越流行,但这类方法通常估算的是尺度模糊的相对深度图。本文提出了一种通过训练绝对深度预测网络,从单眼内窥镜图像序列中重建保持比例的三维形状的方法。首先,使用内窥镜模拟器创建 RGB 图像和深度图同步序列数据集。然后,训练一个有监督的深度预测网络,从 RGB 图像估计深度图,与地面实况深度图相比损失最小。对预测的深度图序列进行对齐,以重建三维形状。最后,将提出的方法应用于真实的内窥镜图像序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare Technology Letters
Healthcare Technology Letters Health Professions-Health Information Management
CiteScore
6.10
自引率
4.80%
发文量
12
审稿时长
22 weeks
期刊介绍: Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信