{"title":"Scale-preserving shape reconstruction from monocular endoscope image sequences by supervised depth learning","authors":"Takeshi Masuda, Ryusuke Sagawa, Ryo Furukawa, Hiroshi Kawasaki","doi":"10.1049/htl2.12064","DOIUrl":null,"url":null,"abstract":"<p>Reconstructing 3D shapes from images are becoming popular, but such methods usually estimate relative depth maps with ambiguous scales. A method for reconstructing a scale-preserving 3D shape from monocular endoscope image sequences through training an absolute depth prediction network is proposed. First, a dataset of synchronized sequences of RGB images and depth maps is created using an endoscope simulator. Then, a supervised depth prediction network is trained that estimates a depth map from a RGB image minimizing the loss compared to the ground-truth depth map. The predicted depth map sequence is aligned to reconstruct a 3D shape. Finally, the proposed method is applied to a real endoscope image sequence.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"11 2-3","pages":"76-84"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.12064","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reconstructing 3D shapes from images are becoming popular, but such methods usually estimate relative depth maps with ambiguous scales. A method for reconstructing a scale-preserving 3D shape from monocular endoscope image sequences through training an absolute depth prediction network is proposed. First, a dataset of synchronized sequences of RGB images and depth maps is created using an endoscope simulator. Then, a supervised depth prediction network is trained that estimates a depth map from a RGB image minimizing the loss compared to the ground-truth depth map. The predicted depth map sequence is aligned to reconstruct a 3D shape. Finally, the proposed method is applied to a real endoscope image sequence.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.