M. M. Smith, M. Zambrano, Mary A. Ankeny, J. Daystar, Steven Pires, J. Pawlak, R. Venditti
{"title":"Aquatic aerobic biodegradation of commonly flushed materials in aerobic wastewater treatment plant solids","authors":"M. M. Smith, M. Zambrano, Mary A. Ankeny, J. Daystar, Steven Pires, J. Pawlak, R. Venditti","doi":"10.15376/biores.19.1.1150-1164","DOIUrl":null,"url":null,"abstract":"Microfibers and microplastics originating from wastewater treatment plant (WWTP) effluents are significant pollutants in freshwater sources and marine environments. This research investigated the biodegradation of cotton microfibers generated from bleached cotton jersey knit fabric and commercially available flushable wipes, polypropylene-based (PP) nonwoven wipes containing a cellulose component, and tissue paper. Biodegradation was tested in wastewater treatment plants (WWTP) solids, seawater, and lakewater according to the ISO 14852 and ASTM D6691 standard methods in an ECHO respirometer. Degradation experiments continued until a plateau in CO2 emissions was reached, and the final biodegradation extent was calculated relative to the theoretical CO2 produced based on elemental analysis. The results showed that the cotton and other cellulosic materials/components biodegrade to a great extent, as expected for all conditions, whereas the PP did not degrade. In general, for the cellulose polypropylene composite wipes, the cellulose biodegraded readily; the presence of the PP did not hinder the cellulose biodegradation.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"12 8","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15376/biores.19.1.1150-1164","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Microfibers and microplastics originating from wastewater treatment plant (WWTP) effluents are significant pollutants in freshwater sources and marine environments. This research investigated the biodegradation of cotton microfibers generated from bleached cotton jersey knit fabric and commercially available flushable wipes, polypropylene-based (PP) nonwoven wipes containing a cellulose component, and tissue paper. Biodegradation was tested in wastewater treatment plants (WWTP) solids, seawater, and lakewater according to the ISO 14852 and ASTM D6691 standard methods in an ECHO respirometer. Degradation experiments continued until a plateau in CO2 emissions was reached, and the final biodegradation extent was calculated relative to the theoretical CO2 produced based on elemental analysis. The results showed that the cotton and other cellulosic materials/components biodegrade to a great extent, as expected for all conditions, whereas the PP did not degrade. In general, for the cellulose polypropylene composite wipes, the cellulose biodegraded readily; the presence of the PP did not hinder the cellulose biodegradation.
期刊介绍:
The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.