Tianshu Liu, Peng Chen, Feng Qiu, Hong-Yu Yang, Nicholas Yew Jin Tan, Y. Chew, Di Wang, Ruidi Li, Qichuan Jiang, Chaolin Tan
{"title":"Review on Laser Directed Energy Deposited Aluminum Alloys","authors":"Tianshu Liu, Peng Chen, Feng Qiu, Hong-Yu Yang, Nicholas Yew Jin Tan, Y. Chew, Di Wang, Ruidi Li, Qichuan Jiang, Chaolin Tan","doi":"10.1088/2631-7990/ad16bb","DOIUrl":null,"url":null,"abstract":"\n The lightweight aluminum (Al) alloys have been widely used in frontier fields like aerospace and automotive industries, which attracts great interest in additive manufacturing to process high-value Al parts. As a mainstream additive manufacturing technique, laser directed energy deposition (LDED) shows good scalability to meet requirements for large-format components manufacturing and repairing. However, LDED Al alloys are highly challenging due to the inherent poor printability (e.g., low laser absorption, high oxidation sensitivity and cracking tendency). To further promote the development of LDED high-performance Al alloys, this review gains a deep understanding of the challenges and strategies to improve printability in LDED Al alloys. The porosity, cracking, distortion, inclusions, elements evaporation and resultant inferior mechanical properties (than laser powder bed fusion) are the key challenges in LDED Al alloys. Processing parameter optimizations, in-situ alloy design, reinforcing particle addition and field assistance are the efficient approaches to improve the printability and performance of LDED Al alloys. The underlying correlations between processes, alloy innovation, characteristic microstructures, and achievable performances in LDED Al alloys are discussed. The benchmarking mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized. This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys. The future opportunities and perspectives in LDED high-performance Al alloys are also outlooked.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad16bb","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The lightweight aluminum (Al) alloys have been widely used in frontier fields like aerospace and automotive industries, which attracts great interest in additive manufacturing to process high-value Al parts. As a mainstream additive manufacturing technique, laser directed energy deposition (LDED) shows good scalability to meet requirements for large-format components manufacturing and repairing. However, LDED Al alloys are highly challenging due to the inherent poor printability (e.g., low laser absorption, high oxidation sensitivity and cracking tendency). To further promote the development of LDED high-performance Al alloys, this review gains a deep understanding of the challenges and strategies to improve printability in LDED Al alloys. The porosity, cracking, distortion, inclusions, elements evaporation and resultant inferior mechanical properties (than laser powder bed fusion) are the key challenges in LDED Al alloys. Processing parameter optimizations, in-situ alloy design, reinforcing particle addition and field assistance are the efficient approaches to improve the printability and performance of LDED Al alloys. The underlying correlations between processes, alloy innovation, characteristic microstructures, and achievable performances in LDED Al alloys are discussed. The benchmarking mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized. This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys. The future opportunities and perspectives in LDED high-performance Al alloys are also outlooked.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.