Practical Implementation of Visual Navigation Based on Semantic Segmentation for Human-Centric Environments

Pub Date : 2023-12-20 DOI:10.20965/jrm.2023.p1419
Miho Adachi, Kazufumi Honda, Junfeng Xue, Hiroaki Sudo, Yuriko Ueda, Yuki Yuda, Marin Wada, Ryusuke Miyamoto
{"title":"Practical Implementation of Visual Navigation Based on Semantic Segmentation for Human-Centric Environments","authors":"Miho Adachi, Kazufumi Honda, Junfeng Xue, Hiroaki Sudo, Yuriko Ueda, Yuki Yuda, Marin Wada, Ryusuke Miyamoto","doi":"10.20965/jrm.2023.p1419","DOIUrl":null,"url":null,"abstract":"This study focuses on visual navigation methods for autonomous mobile robots based on semantic segmentation results. The challenge is to perform the expected actions without being affected by the presence of pedestrians. Therefore, we implemented a semantics-based localization method that is not affected by dynamic obstacles and a direction change method at intersections that functions even with coarse-grain localization results. The proposed method was evaluated through driving experiments in the Tsukuba Challenge 2022, where a 290 m run including 10 intersections was achieved in the confirmation run section.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on visual navigation methods for autonomous mobile robots based on semantic segmentation results. The challenge is to perform the expected actions without being affected by the presence of pedestrians. Therefore, we implemented a semantics-based localization method that is not affected by dynamic obstacles and a direction change method at intersections that functions even with coarse-grain localization results. The proposed method was evaluated through driving experiments in the Tsukuba Challenge 2022, where a 290 m run including 10 intersections was achieved in the confirmation run section.
分享
查看原文
基于语义分割的视觉导航在以人为本的环境中的实际应用
本研究的重点是基于语义分割结果的自主移动机器人视觉导航方法。面临的挑战是如何在不受行人影响的情况下执行预期操作。因此,我们采用了一种不受动态障碍物影响的基于语义的定位方法,以及一种在交叉路口改变方向的方法,即使在粗粒度定位结果的情况下也能发挥作用。我们在 2022 年筑波挑战赛中通过驾驶实验对所提出的方法进行了评估,在确认运行部分实现了包括 10 个交叉路口在内的 290 米运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信