Intelligent design and synthesis of energy catalytic materials

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary
Linkai Han, Zhonghua Xiang
{"title":"Intelligent design and synthesis of energy catalytic materials","authors":"Linkai Han,&nbsp;Zhonghua Xiang","doi":"10.1016/j.fmre.2023.10.012","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient energy conversion and storage are crucial for the sustainable development and growth of renewable energy sources. However, the limited varieties of traditional energy catalytic materials cannot match the fast-expansion requirement of raising various clean energy for industrial applications. Thus, accelerating the design and synthesis of high-performance catalysts is necessary for the application of energy equipment. Recently, with artificial intelligence (AI) technology being advanced by leaps and bounds, it is feasible to efficiently and precisely screen materials and optimize synthesis conditions in a huge unknown space. Here, we introduce and review AI techniques used in the development of catalytic materials in detail. We describe the workflow for designing and synthesizing new materials using machine learning (ML) and robotics. We summarize the sources of data collection, the intelligent algorithms commonly used to build ML models, and the laboratory modules for the intelligent synthesis of materials. We provide the illustrations of predicting the properties of catalytic materials with ML assistance in different material types. In addition, we present the potential strategies for finding material synthesis pathways, and advances in robotics to accelerate high-performance catalytic materials synthesis in the review. Finally, the summary, challenges, and potential directions in the development of AI-assisted catalytic materials are presented and discussed.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 2","pages":"Pages 624-639"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325823003485","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient energy conversion and storage are crucial for the sustainable development and growth of renewable energy sources. However, the limited varieties of traditional energy catalytic materials cannot match the fast-expansion requirement of raising various clean energy for industrial applications. Thus, accelerating the design and synthesis of high-performance catalysts is necessary for the application of energy equipment. Recently, with artificial intelligence (AI) technology being advanced by leaps and bounds, it is feasible to efficiently and precisely screen materials and optimize synthesis conditions in a huge unknown space. Here, we introduce and review AI techniques used in the development of catalytic materials in detail. We describe the workflow for designing and synthesizing new materials using machine learning (ML) and robotics. We summarize the sources of data collection, the intelligent algorithms commonly used to build ML models, and the laboratory modules for the intelligent synthesis of materials. We provide the illustrations of predicting the properties of catalytic materials with ML assistance in different material types. In addition, we present the potential strategies for finding material synthesis pathways, and advances in robotics to accelerate high-performance catalytic materials synthesis in the review. Finally, the summary, challenges, and potential directions in the development of AI-assisted catalytic materials are presented and discussed.

Abstract Image

能源催化材料的智能设计与合成
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信