Atomic scale insights into material removal mechanisms in nanoscale machining of copper beryllium

A. Sharma, Amit Kumar
{"title":"Atomic scale insights into material removal mechanisms in nanoscale machining of copper beryllium","authors":"A. Sharma, Amit Kumar","doi":"10.1177/25165984231203091","DOIUrl":null,"url":null,"abstract":"The heterogeneous nature of the copper beryllium (CuBe) workpiece because of the presence of hard particles tends to affect material removal. When machining a CuBe material, it is anticipated that the mechanism of cutting and surface formation may differ from those seen when cutting a homogenous Cu material. Although these mechanisms are popular for the diamond turning of homogeneous materials, they have not been thoroughly studied in relation to CuBe alloys, which contain hard beryllium precipitates. Therefore, the effect of hard particles in the workpiece specimen on the nano-regime diamond turning of CuBe alloy needs to be understood. To explain the influence of Beryllium (Be) particles on the cutting tool and the workpiece surface, a molecular dynamics (MD) simulation was performed. It is revealed that the material removal mechanism in the case of CuBe is phase-dependent. Ductile machining is dominant in the Cu phase, and brittle fracture is dominant in the Be rich phase. It is also observed that the a/r ratio equal to 1 is suitable for cutting in the Cu phase and for ductile regime machining conditions in the Be phase. The a/r ratio higher than 1 causes higher cutting forces, and thus shear plane cutting takes place, which leads to a higher amount of material removal.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"12 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25165984231203091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The heterogeneous nature of the copper beryllium (CuBe) workpiece because of the presence of hard particles tends to affect material removal. When machining a CuBe material, it is anticipated that the mechanism of cutting and surface formation may differ from those seen when cutting a homogenous Cu material. Although these mechanisms are popular for the diamond turning of homogeneous materials, they have not been thoroughly studied in relation to CuBe alloys, which contain hard beryllium precipitates. Therefore, the effect of hard particles in the workpiece specimen on the nano-regime diamond turning of CuBe alloy needs to be understood. To explain the influence of Beryllium (Be) particles on the cutting tool and the workpiece surface, a molecular dynamics (MD) simulation was performed. It is revealed that the material removal mechanism in the case of CuBe is phase-dependent. Ductile machining is dominant in the Cu phase, and brittle fracture is dominant in the Be rich phase. It is also observed that the a/r ratio equal to 1 is suitable for cutting in the Cu phase and for ductile regime machining conditions in the Be phase. The a/r ratio higher than 1 causes higher cutting forces, and thus shear plane cutting takes place, which leads to a higher amount of material removal.
从原子尺度洞察铍铜纳米加工中的材料去除机制
铍铜 (CuBe) 工件因含有硬质颗粒而具有异质性,这往往会影响材料的去除。在加工铍铜材料时,预计切削和表面形成的机理可能不同于切削均质铜材料时的机理。虽然这些机制在金刚石车削均质材料时很流行,但对于含有硬铍沉淀的 CuBe 合金,还没有进行过深入研究。因此,需要了解工件试样中的硬质颗粒对 CuBe 合金纳米规金刚石车削的影响。为了解释铍(Be)颗粒对切削工具和工件表面的影响,我们进行了分子动力学(MD)模拟。结果表明,CuBe 的材料去除机制与相位有关。在 Cu 相中主要是延展性加工,而在富 Be 相中主要是脆性断裂。还可以观察到,a/r 比等于 1 时,适合在 Cu 相中进行切削,而在 Be 相中则适合韧性机制加工条件。大于 1 的 a/r 比会导致较高的切削力,因此会发生剪切面切削,从而导致较高的材料去除量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信