Alpha Fractal Rational Quintic Spline with Shape Preserving Properties

Shamli Shrama Gautam, Kuldip Katiyar
{"title":"Alpha Fractal Rational Quintic Spline with Shape Preserving Properties","authors":"Shamli Shrama Gautam, Kuldip Katiyar","doi":"10.37394/232028.2023.3.13","DOIUrl":null,"url":null,"abstract":"The intent of this paper is to construct the alpha fractal rational quintic spline. We have considered C2 rational quintic function, which is of the rational form, where the numerator is a quintic polynomial and denominator is a linear polynomial having two shape parameters i.e. sm & tm and deduced the uniform error bound for alpha fractal rational quintic spline. Also constraints have been applied on shape parameters and scaling factors to drive the shape preserving properties.","PeriodicalId":191618,"journal":{"name":"International Journal of Computational and Applied Mathematics & Computer Science","volume":"23 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational and Applied Mathematics & Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232028.2023.3.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The intent of this paper is to construct the alpha fractal rational quintic spline. We have considered C2 rational quintic function, which is of the rational form, where the numerator is a quintic polynomial and denominator is a linear polynomial having two shape parameters i.e. sm & tm and deduced the uniform error bound for alpha fractal rational quintic spline. Also constraints have been applied on shape parameters and scaling factors to drive the shape preserving properties.
具有形状保持特性的阿尔法分形有理五次样条曲线
本文旨在构建阿尔法分形有理五次样条曲线。我们考虑了 C2 有理五次函数(分子为五次多项式,分母为线性多项式,具有两个形状参数,即 sm 和 tm)的有理形式,并推导出了α分形有理五次样条曲线的均匀误差约束。此外,还对形状参数和缩放因子施加了约束,以驱动形状保持特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信