{"title":"A Surface-Enhanced Raman Spectroscopic Sensor Pen","authors":"Zejiang Song, Zhijie Li, Weishen Zhan, Wanli Zhao, Hisang-Chen Chui, Rui Li","doi":"10.3390/inventions8060156","DOIUrl":null,"url":null,"abstract":"Surface-enhanced Raman spectroscopy (SERS) is widely used as a detection method in scientific research fields. However, the method for creating SERS substrates often requires expensive equipment and involves a complex process. Additionally, preserving and effectively utilizing SERS substrates in the long term poses a challenging problem. In order to address these issues, we propose a new method for creating SERS substrates on various types of paper using a combination of a ballpoint pen and 3D printing. This method ensures a high enhancement factor and maximizes the utilization of the substrate. We achieved an enhancement factor of up to 8.2 × 108 for detecting R6G molecules, with a relative standard deviation of 11.13% for the Raman peak at 612 cm−1 of R6G, demonstrating excellent SERS sensitivity and spectral reproducibility. Furthermore, we successfully detected thiram at a concentration as low as 10−8, which is lower than both the Chinese national standard and European standard.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions8060156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Surface-enhanced Raman spectroscopy (SERS) is widely used as a detection method in scientific research fields. However, the method for creating SERS substrates often requires expensive equipment and involves a complex process. Additionally, preserving and effectively utilizing SERS substrates in the long term poses a challenging problem. In order to address these issues, we propose a new method for creating SERS substrates on various types of paper using a combination of a ballpoint pen and 3D printing. This method ensures a high enhancement factor and maximizes the utilization of the substrate. We achieved an enhancement factor of up to 8.2 × 108 for detecting R6G molecules, with a relative standard deviation of 11.13% for the Raman peak at 612 cm−1 of R6G, demonstrating excellent SERS sensitivity and spectral reproducibility. Furthermore, we successfully detected thiram at a concentration as low as 10−8, which is lower than both the Chinese national standard and European standard.