Analytical Solution of the Susceptible-Infected-Recovered/Removed Model for the Not-Too-Late Temporal Evolution of Epidemics for General Time-Dependent Recovery and Infection Rates

COVID Pub Date : 2023-12-16 DOI:10.3390/covid3120123
Reinhard Schlickeiser, Martin Kröger
{"title":"Analytical Solution of the Susceptible-Infected-Recovered/Removed Model for the Not-Too-Late Temporal Evolution of Epidemics for General Time-Dependent Recovery and Infection Rates","authors":"Reinhard Schlickeiser, Martin Kröger","doi":"10.3390/covid3120123","DOIUrl":null,"url":null,"abstract":"The dynamical equations of the susceptible-infected-recovered/removed (SIR) epidemics model play an important role in predicting and/or analyzing the temporal evolution of epidemic outbreaks. Crucial input quantities are the time-dependent infection (a(t)) and recovery (μ(t)) rates regulating the transitions between the compartments S→I and I→R, respectively. Accurate analytical approximations for the temporal dependence of the rate of new infections J˚(t)=a(t)S(t)I(t) and the corresponding cumulative fraction of new infections J(t)=J(t0)+∫t0tdxJ˚(x) are available in the literature for either stationary infection and recovery rates or for a stationary value of the ratio k(t)=μ(t)/a(t). Here, a new and original accurate analytical approximation is derived for general, arbitrary, and different temporal dependencies of the infection and recovery rates, which is valid for not-too-late times after the start of the infection when the cumulative fraction J(t)≪1 is much less than unity. The comparison of the analytical approximation with the exact numerical solution of the SIR equations for different illustrative examples proves the accuracy of the analytical approach.","PeriodicalId":72714,"journal":{"name":"COVID","volume":"15 s1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"COVID","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/covid3120123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamical equations of the susceptible-infected-recovered/removed (SIR) epidemics model play an important role in predicting and/or analyzing the temporal evolution of epidemic outbreaks. Crucial input quantities are the time-dependent infection (a(t)) and recovery (μ(t)) rates regulating the transitions between the compartments S→I and I→R, respectively. Accurate analytical approximations for the temporal dependence of the rate of new infections J˚(t)=a(t)S(t)I(t) and the corresponding cumulative fraction of new infections J(t)=J(t0)+∫t0tdxJ˚(x) are available in the literature for either stationary infection and recovery rates or for a stationary value of the ratio k(t)=μ(t)/a(t). Here, a new and original accurate analytical approximation is derived for general, arbitrary, and different temporal dependencies of the infection and recovery rates, which is valid for not-too-late times after the start of the infection when the cumulative fraction J(t)≪1 is much less than unity. The comparison of the analytical approximation with the exact numerical solution of the SIR equations for different illustrative examples proves the accuracy of the analytical approach.
针对一般时间依赖性恢复率和感染率的流行病不太晚时间演变的易感-感染-恢复-移除模型的分析解决方案
易感-感染-恢复-移除(SIR)流行病模型的动力学方程在预测和/或分析流行病爆发的时间演化方面发挥着重要作用。关键的输入量是与时间相关的感染率(a(t))和恢复率(μ(t)),它们分别调节 S→I 和 I→R 区间的转换。对于新感染率 J˚(t)=a(t)S(t)I(t)和相应的新感染累积分数 J(t)=J(t0)+∫t0tdxJ˚(x)的时间依赖性,文献中已有静态感染率和恢复率或比率 k(t)=μ(t)/a(t)的静态值的精确分析近似值。本文针对感染率和恢复率的一般、任意和不同的时间依赖性,推导出一种新的、独创的精确分析近似值,该近似值适用于感染开始后不太晚的时间,此时累积分数 J(t)≪1 远小于统一值。在不同的示例中,分析近似值与 SIR 方程的精确数值解的比较证明了分析方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信