Uncertainty-aware visually-attentive navigation using deep neural networks

Huan Nguyen, R. Andersen, Evangelos Boukas, Kostas Alexis
{"title":"Uncertainty-aware visually-attentive navigation using deep neural networks","authors":"Huan Nguyen, R. Andersen, Evangelos Boukas, Kostas Alexis","doi":"10.1177/02783649231218720","DOIUrl":null,"url":null,"abstract":"Autonomous navigation and information gathering in challenging environments are demanding since the robot’s sensors may be susceptible to non-negligible noise, its localization and mapping may be subject to significant uncertainty and drift, and performing collision-checking or evaluating utility functions using a map often requires high computational costs. We propose a learning-based method to efficiently tackle this problem without relying on a map of the environment or the robot’s position. Our method utilizes a Collision Prediction Network (CPN) for predicting the collision scores of a set of action sequences, and an Information gain Prediction Network (IPN) for estimating their associated information gain. Both networks assume access to a) the depth image (CPN) or the depth image and the detection mask from any visual method (IPN), b) the robot’s partial state (including its linear velocities, z-axis angular velocity, and roll/pitch angles), and c) a library of action sequences. Specifically, the CPN accounts for the estimation uncertainty of the robot’s partial state and the neural network’s epistemic uncertainty by using the Unscented Transform and an ensemble of neural networks. The outputs of the networks are combined with a goal vector to identify the next-best-action sequence. Simulation studies demonstrate the method’s robustness against noisy robot velocity estimates and depth images, alongside its advantages compared to state-of-the-art methods and baselines in (visually-attentive) navigation tasks. Lastly, multiple real-world experiments are presented, including safe flights at 2.5 m/s in a cluttered corridor, and missions inside a dense forest alongside visually-attentive navigation in industrial and university buildings.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"114 s431","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649231218720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous navigation and information gathering in challenging environments are demanding since the robot’s sensors may be susceptible to non-negligible noise, its localization and mapping may be subject to significant uncertainty and drift, and performing collision-checking or evaluating utility functions using a map often requires high computational costs. We propose a learning-based method to efficiently tackle this problem without relying on a map of the environment or the robot’s position. Our method utilizes a Collision Prediction Network (CPN) for predicting the collision scores of a set of action sequences, and an Information gain Prediction Network (IPN) for estimating their associated information gain. Both networks assume access to a) the depth image (CPN) or the depth image and the detection mask from any visual method (IPN), b) the robot’s partial state (including its linear velocities, z-axis angular velocity, and roll/pitch angles), and c) a library of action sequences. Specifically, the CPN accounts for the estimation uncertainty of the robot’s partial state and the neural network’s epistemic uncertainty by using the Unscented Transform and an ensemble of neural networks. The outputs of the networks are combined with a goal vector to identify the next-best-action sequence. Simulation studies demonstrate the method’s robustness against noisy robot velocity estimates and depth images, alongside its advantages compared to state-of-the-art methods and baselines in (visually-attentive) navigation tasks. Lastly, multiple real-world experiments are presented, including safe flights at 2.5 m/s in a cluttered corridor, and missions inside a dense forest alongside visually-attentive navigation in industrial and university buildings.
利用深度神经网络进行不确定性感知的视觉注意力导航
在具有挑战性的环境中进行自主导航和信息收集要求很高,因为机器人的传感器可能会受到不可忽略的噪声影响,其定位和绘图可能会受到很大的不确定性和漂移的影响,而且使用地图进行碰撞检查或评估效用函数通常需要很高的计算成本。我们提出了一种基于学习的方法,无需依赖环境地图或机器人位置,即可高效解决这一问题。我们的方法利用碰撞预测网络(CPN)来预测一组动作序列的碰撞得分,并利用信息增益预测网络(IPN)来估算相关的信息增益。这两个网络都假设可以访问:a) 深度图像(CPN)或深度图像和任何视觉方法(IPN)的检测掩码;b) 机器人的部分状态(包括线速度、Z 轴角速度和翻滚/俯仰角);c) 动作序列库。具体来说,CPN 通过使用无色变换和神经网络集合来考虑机器人部分状态的估计不确定性和神经网络的认识不确定性。神经网络的输出与目标向量相结合,以确定下一个最佳行动序列。仿真研究证明了该方法对噪声机器人速度估计和深度图像的鲁棒性,以及在(视觉注意力)导航任务中与最先进方法和基线相比的优势。最后,介绍了多个真实世界的实验,包括在杂乱的走廊中以 2.5 米/秒的速度安全飞行,在茂密的森林中执行任务,以及在工业和大学建筑中进行视觉注意力导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信