Effect of Topology Parameters on Physical–Mechanical Properties of Magnetic PLA 3D-Printed Structures

IF 2.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
L. Zárybnická, M. Pagáč, R. Ševčík, Jaroslav Pokorný, Martin Marek
{"title":"Effect of Topology Parameters on Physical–Mechanical Properties of Magnetic PLA 3D-Printed Structures","authors":"L. Zárybnická, M. Pagáč, R. Ševčík, Jaroslav Pokorný, Martin Marek","doi":"10.3390/magnetochemistry9120232","DOIUrl":null,"url":null,"abstract":"This work aims to characterize 3D-printed structures composed of a thermoplastic material (polylactic acid (PLA)) containing a combination of magnetic particles composed of iron(III) oxide (hematite) and iron(II)–iron (III) oxide (magnetite) with various infill densities and print orientations in regard to their possible processing by Fused Filament Fabrication additive technology. The correct processing temperatures have been determined using thermal analysis, and the paramagnetic and mechanical properties of the samples have been tested. The relative permeability has been identified to be strongly dependent on the topology parameters of the tested samples. The results of the inductance values for the samples without magnetic additives (infill densities 50% and 100%) have been detected to be comparable; nonetheless, the magnetic samples with 100% infill density has been found to be about 50% higher. A similar trend has been observed in the case of the values of the relative permeability, where the magnetic samples with 100% infill density have been measured as having an about 40% increased relative permeability in the comparison with the samples without magnetic additives (infill densities 20–100%). Finite Element Modelling (FEM) simulations have been applied to determine the magnetic field distributions and, moreover, to calculate the holding forces of all the printed samples. The maximum value of the holding force for the minimum distance of the plastic plate has been found to reach a value of almost 300 N (magnetic sample with 100% infill density). The obtained comprehensive characterization of the printed samples may be utilized for designing and tuning the desired properties of the samples needed in various industrial applications.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9120232","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to characterize 3D-printed structures composed of a thermoplastic material (polylactic acid (PLA)) containing a combination of magnetic particles composed of iron(III) oxide (hematite) and iron(II)–iron (III) oxide (magnetite) with various infill densities and print orientations in regard to their possible processing by Fused Filament Fabrication additive technology. The correct processing temperatures have been determined using thermal analysis, and the paramagnetic and mechanical properties of the samples have been tested. The relative permeability has been identified to be strongly dependent on the topology parameters of the tested samples. The results of the inductance values for the samples without magnetic additives (infill densities 50% and 100%) have been detected to be comparable; nonetheless, the magnetic samples with 100% infill density has been found to be about 50% higher. A similar trend has been observed in the case of the values of the relative permeability, where the magnetic samples with 100% infill density have been measured as having an about 40% increased relative permeability in the comparison with the samples without magnetic additives (infill densities 20–100%). Finite Element Modelling (FEM) simulations have been applied to determine the magnetic field distributions and, moreover, to calculate the holding forces of all the printed samples. The maximum value of the holding force for the minimum distance of the plastic plate has been found to reach a value of almost 300 N (magnetic sample with 100% infill density). The obtained comprehensive characterization of the printed samples may be utilized for designing and tuning the desired properties of the samples needed in various industrial applications.
拓扑参数对磁性聚乳酸三维打印结构物理机械特性的影响
这项研究旨在表征由热塑性材料(聚乳酸)构成的三维打印结构,该材料含有由氧化铁(III)(赤铁矿)和氧化铁(II)-氧化铁(III)(磁铁矿)组成的磁性颗粒组合,具有不同的填充密度和打印方向,可通过熔融长丝制造添加剂技术进行加工。通过热分析确定了正确的加工温度,并测试了样品的顺磁性和机械性能。已确定相对磁导率与测试样品的拓扑参数密切相关。不含磁性添加剂的样品(填充密度为 50%和 100%)的电感值结果相当,但填充密度为 100%的磁性样品的电感值要高出约 50%。在相对磁导率值方面也观察到类似的趋势,与不含磁性添加剂的样品(填充密度为 20-100%)相比,填充密度为 100%的磁性样品的相对磁导率增加了约 40%。有限元建模(FEM)模拟用于确定磁场分布,并计算所有印刷样品的保持力。结果发现,塑料板最小距离的最大保持力值接近 300 N(填充密度为 100% 的磁性样品)。所获得的印刷样品的综合特性可用于设计和调整各种工业应用中所需样品的理想特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Magnetochemistry
Magnetochemistry Chemistry-Chemistry (miscellaneous)
CiteScore
3.90
自引率
11.10%
发文量
145
审稿时长
11 weeks
期刊介绍: Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信