Pablo Aguado‐Ramsay, T. Villaverde, R. Garilleti, J. G. Burleigh, Stuart F. McDaniel, M. Flagmeier, Jurgen Nieuwkoop, Arno van der Pluijm, Florian Hans, F. Lara, I. Draper
{"title":"Seeking the identity of an enigmatic moss by embracing phylogenomics","authors":"Pablo Aguado‐Ramsay, T. Villaverde, R. Garilleti, J. G. Burleigh, Stuart F. McDaniel, M. Flagmeier, Jurgen Nieuwkoop, Arno van der Pluijm, Florian Hans, F. Lara, I. Draper","doi":"10.1111/jse.13040","DOIUrl":null,"url":null,"abstract":"Currently, a wide range of genomic techniques is available at a relatively affordable price. However, not all of them have been equally explored in bryophyte systematics. In the present study, we apply next‐generation sequencing to identify samples that cannot be assigned to a taxon by morphological analysis or by Sanger sequencing methods. These samples correspond to a moss with an enigmatic morphology that has been found throughout Western Europe over the last two decades. They exhibit several anomalies in the gametophyte and, on the rare occasions that they appear, also in the sporophyte. The most significant alterations are related to the shape of the leaves. Morphologically, all specimens correspond to mosses of the genus Lewinskya, and the least modified samples are potentially attributable to the Lewinskya affinis complex. Specimen identifications were first attempted using up to seven molecular markers with no satisfactory results. Thus, we employed data generated from targeted enrichment using the GoFlag 408 flagellate land plant probe set to elucidate their identity. Our results demonstrate that all the enigmatic samples correspond to a single species, L. affinis s.str. This approach provided the necessary resolution to confidently identify these challenging samples and may be a powerful tool for similar cases, especially in bryophytes.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":" 59","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systematics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jse.13040","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, a wide range of genomic techniques is available at a relatively affordable price. However, not all of them have been equally explored in bryophyte systematics. In the present study, we apply next‐generation sequencing to identify samples that cannot be assigned to a taxon by morphological analysis or by Sanger sequencing methods. These samples correspond to a moss with an enigmatic morphology that has been found throughout Western Europe over the last two decades. They exhibit several anomalies in the gametophyte and, on the rare occasions that they appear, also in the sporophyte. The most significant alterations are related to the shape of the leaves. Morphologically, all specimens correspond to mosses of the genus Lewinskya, and the least modified samples are potentially attributable to the Lewinskya affinis complex. Specimen identifications were first attempted using up to seven molecular markers with no satisfactory results. Thus, we employed data generated from targeted enrichment using the GoFlag 408 flagellate land plant probe set to elucidate their identity. Our results demonstrate that all the enigmatic samples correspond to a single species, L. affinis s.str. This approach provided the necessary resolution to confidently identify these challenging samples and may be a powerful tool for similar cases, especially in bryophytes.
期刊介绍:
Journal of Systematics and Evolution (JSE, since 2008; formerly Acta Phytotaxonomica Sinica) is a plant-based international journal newly dedicated to the description and understanding of the biological diversity. It covers: description of new taxa, monographic revision, phylogenetics, molecular evolution and genome evolution, evolutionary developmental biology, evolutionary ecology, population biology, conservation biology, biogeography, paleobiology, evolutionary theories, and related subjects.