Computation of Neumann Localised Boundary Domain Integral Equations

Q4 Multidisciplinary
Nurul Akmal Mohamed
{"title":"Computation of Neumann Localised Boundary Domain Integral Equations","authors":"Nurul Akmal Mohamed","doi":"10.32802/asmscj.2023.1004","DOIUrl":null,"url":null,"abstract":"Most integrals in Localised Boundary Domain Integral Equations (LBDIEs) comprise singularities. This paper aims to produce numerical solutions of the LBDIEs for the Partial Differential Equations with variable coefficients. The singularities of the boundary integrals in LBDIEs will be handled by using a semi-analytic for logarithmic singularity and a semi-quadratic analytic method for r−2 singularity. Whereas the singular domain integrals are handled by using the Duffy transformation. The LBDIEs that we consider are associated with the Neumann problem, which can be solved with a condition. If it can be solved, the solution is, however, unique up to an additive constant. We add a perturbation operator to the LBDIEs to convert the LBDIE to a uniquely solvable equation. The perturbed integral operator leads the perturbed LBDIEs to a dense matrix system that disable the use of methods in solving sparse matrix system. We solve the system of linear equations by Lower-Upper (LU) decomposition method. The numerical results indicate that high accuracy results can be attained. It gives the impression that the methods we use in this numerical experiment are reliable in handling the boundary and domain singular integrals.","PeriodicalId":38804,"journal":{"name":"ASM Science Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32802/asmscj.2023.1004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Most integrals in Localised Boundary Domain Integral Equations (LBDIEs) comprise singularities. This paper aims to produce numerical solutions of the LBDIEs for the Partial Differential Equations with variable coefficients. The singularities of the boundary integrals in LBDIEs will be handled by using a semi-analytic for logarithmic singularity and a semi-quadratic analytic method for r−2 singularity. Whereas the singular domain integrals are handled by using the Duffy transformation. The LBDIEs that we consider are associated with the Neumann problem, which can be solved with a condition. If it can be solved, the solution is, however, unique up to an additive constant. We add a perturbation operator to the LBDIEs to convert the LBDIE to a uniquely solvable equation. The perturbed integral operator leads the perturbed LBDIEs to a dense matrix system that disable the use of methods in solving sparse matrix system. We solve the system of linear equations by Lower-Upper (LU) decomposition method. The numerical results indicate that high accuracy results can be attained. It gives the impression that the methods we use in this numerical experiment are reliable in handling the boundary and domain singular integrals.
计算新曼局部边界域积分方程
局部边域积分方程(LBDIEs)中的大多数积分都包含奇点。本文旨在求解具有可变系数的偏微分方程的局部边界域积分方程数值解。LBDIEs 中边界积分的奇异性将用半解析法处理对数奇异性,用半二次解析法处理 r-2 奇异性。而奇异域积分则通过达菲变换来处理。我们所考虑的 LBDIEs 与诺伊曼问题有关,该问题可以通过一个条件求解。如果可以求解,那么解的唯一性取决于一个加常数。我们在 LBDIE 中加入扰动算子,将 LBDIE 转换为唯一可解方程。扰动积分算子将扰动 LBDIEs 转化为密集矩阵系统,从而禁止使用求解稀疏矩阵系统的方法。我们采用下-上(LU)分解法求解线性方程组。数值结果表明,可以获得高精度结果。这给人的印象是,我们在这次数值实验中使用的方法在处理边界和域奇异积分方面是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ASM Science Journal
ASM Science Journal Multidisciplinary-Multidisciplinary
CiteScore
0.60
自引率
0.00%
发文量
23
期刊介绍: The ASM Science Journal publishes advancements in the broad fields of medical, engineering, earth, mathematical, physical, chemical and agricultural sciences as well as ICT. Scientific articles published will be on the basis of originality, importance and significant contribution to science, scientific research and the public. Scientific articles published will be on the basis of originality, importance and significant contribution to science, scientific research and the public. Scientists who subscribe to the fields listed above will be the source of papers to the journal. All articles will be reviewed by at least two experts in that particular field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信