Experimental Study of Seamless Switch Between GNSS- and LiDAR-Based Self-Localization

IF 0.9 Q4 ROBOTICS
T. Hasegawa, Haruki Miyoshi, Shin’ichi Yuta
{"title":"Experimental Study of Seamless Switch Between GNSS- and LiDAR-Based Self-Localization","authors":"T. Hasegawa, Haruki Miyoshi, Shin’ichi Yuta","doi":"10.20965/jrm.2023.p1514","DOIUrl":null,"url":null,"abstract":"A self-localization method that can seamlessly switch positions and attitudes estimated using normal distributions transform (NDT) scan matching and a real-time kinematic global navigation satellite system (GNSS) is successfully developed. One of the issues encountered in this method is the sharing of global coordinates among the different estimation methods. Therefore, the three-dimensional environmental maps utilized in the NDT scan matching are created based on the planar Cartesian coordinate system used in the GNSS to obtain accurate information regarding the location, shape, and size of the actual terrain and geographic features. Consequently, seamlessly switching between different methods enables mobile robots to stably obtain accurate estimated positions and attitudes. An autonomous driving experiment is conducted using this self-localization method in the Tsukuba Challenge 2022, and the mobile robot completed a designated course involving more than 2 km in an urban area.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"82 12","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A self-localization method that can seamlessly switch positions and attitudes estimated using normal distributions transform (NDT) scan matching and a real-time kinematic global navigation satellite system (GNSS) is successfully developed. One of the issues encountered in this method is the sharing of global coordinates among the different estimation methods. Therefore, the three-dimensional environmental maps utilized in the NDT scan matching are created based on the planar Cartesian coordinate system used in the GNSS to obtain accurate information regarding the location, shape, and size of the actual terrain and geographic features. Consequently, seamlessly switching between different methods enables mobile robots to stably obtain accurate estimated positions and attitudes. An autonomous driving experiment is conducted using this self-localization method in the Tsukuba Challenge 2022, and the mobile robot completed a designated course involving more than 2 km in an urban area.
基于 GNSS 和激光雷达的自定位无缝切换实验研究
成功开发了一种自定位方法,可无缝切换使用正态分布变换(NDT)扫描匹配和实时运动学全球导航卫星系统(GNSS)估算的位置和姿态。该方法遇到的问题之一是不同估算方法之间共享全局坐标。因此,无损检测扫描匹配中使用的三维环境地图是基于全球导航卫星系统使用的平面直角坐标系创建的,以获得有关实际地形和地理特征的位置、形状和大小的准确信息。因此,不同方法之间的无缝切换可使移动机器人稳定地获得准确的估计位置和姿态。在 2022 年筑波挑战赛中,利用这种自定位方法进行了自动驾驶实验,移动机器人在城市地区完成了超过 2 公里的指定路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
36.40%
发文量
134
期刊介绍: First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信