{"title":"Improved Visual Robot Place Recognition of Scan-Context Descriptors by Combining with CNN and SVM","authors":"Minying Ye, Kanji Tanaka","doi":"10.20965/jrm.2023.p1622","DOIUrl":null,"url":null,"abstract":"Visual place recognition from a 3D laser LiDAR is one of the most active research areas in robotics. Especially, learning and recognition of scene descriptors, such as scan context descriptors that map 3D point clouds to 2D point clouds, is one of the promising research directions. Although the scan-context descriptor has a sufficiently high recognition performance, it is still expensive image data and cannot be handled with low-capacity non-deep models. In this paper, we explore the task of compressing the scan context descriptor model while maintaining its recognition performance. To this end, the proposed approach slightly modifies the off-the-shelf classifier model of convolutional neural networks (CNN) from its basis, by replacing the SoftMax part with a support vector machine (SVM). Experiments with publicly available NCLT dataset validate the effectiveness of the proposed approach.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"48 8","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Visual place recognition from a 3D laser LiDAR is one of the most active research areas in robotics. Especially, learning and recognition of scene descriptors, such as scan context descriptors that map 3D point clouds to 2D point clouds, is one of the promising research directions. Although the scan-context descriptor has a sufficiently high recognition performance, it is still expensive image data and cannot be handled with low-capacity non-deep models. In this paper, we explore the task of compressing the scan context descriptor model while maintaining its recognition performance. To this end, the proposed approach slightly modifies the off-the-shelf classifier model of convolutional neural networks (CNN) from its basis, by replacing the SoftMax part with a support vector machine (SVM). Experiments with publicly available NCLT dataset validate the effectiveness of the proposed approach.
期刊介绍:
First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.