Voltammetric approach to measuring free acid in anhydride and ester based on benzoquinone electrochemical reduction

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Yuhong Liu, Mi Lin, Jianguo Wang
{"title":"Voltammetric approach to measuring free acid in anhydride and ester based on benzoquinone electrochemical reduction","authors":"Yuhong Liu,&nbsp;Mi Lin,&nbsp;Jianguo Wang","doi":"10.1002/elan.202300362","DOIUrl":null,"url":null,"abstract":"<p>Free acids commonly exist in anhydride and esters because they are unstable and tend to break down into free acids, which affect the quality of subsequent products in industrial production. Phthalic anhydride and ethyl acetate undergo hydrolysis reactions to form phthalic acid and acetic acid. A differential pulse voltammetry method for the determination of phthalic acid and acetic acid was developed with a bare glassy carbon electrode. Phthalic acid and acetic acid caused a new cathodic peak at more positive potential during the reduction of 1,4-benzoquinone in acetonitrile or aqueous solution. The new peaks are attributed to the drastic increase in pH at the electrode surface caused by the consumption of protons in the benzoquinone reduction reaction. The peak current of the new cathodic peak was dependent on the concentration of phthalic acid and acetic acid but independent of BQ, phthalic anhydride, and ethyl acetate. This method does not cause hydrolysis of anhydride and ester because no external base is introduced. Furthermore, the method is sensitive, rapid, and does not require pretreatment.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"36 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.202300362","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Free acids commonly exist in anhydride and esters because they are unstable and tend to break down into free acids, which affect the quality of subsequent products in industrial production. Phthalic anhydride and ethyl acetate undergo hydrolysis reactions to form phthalic acid and acetic acid. A differential pulse voltammetry method for the determination of phthalic acid and acetic acid was developed with a bare glassy carbon electrode. Phthalic acid and acetic acid caused a new cathodic peak at more positive potential during the reduction of 1,4-benzoquinone in acetonitrile or aqueous solution. The new peaks are attributed to the drastic increase in pH at the electrode surface caused by the consumption of protons in the benzoquinone reduction reaction. The peak current of the new cathodic peak was dependent on the concentration of phthalic acid and acetic acid but independent of BQ, phthalic anhydride, and ethyl acetate. This method does not cause hydrolysis of anhydride and ester because no external base is introduced. Furthermore, the method is sensitive, rapid, and does not require pretreatment.

Abstract Image

基于苯醌电化学还原测量酸酐和酯中游离酸的伏安法
na
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electroanalysis
Electroanalysis 化学-电化学
CiteScore
6.00
自引率
3.30%
发文量
222
审稿时长
2.4 months
期刊介绍: Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications. Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信